Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия химическая, превращение в работу

    В исследовании термодинамики химических превращений в конце XIX в. большую роль сыграли работы голландского физикохимика Я. X. Вант-Гоффа. Мысленно проведя газовую реакцию в равновесных условиях, т. е. сжимая и расширяя газы с совершением максимальной работы в так называемом ящике Вант-Гоффа , он вывел знаменитое уравнение изотермы химической реакции, которым связал максимальную работу, т. е. изменение энергии Гиббса в реакции, с известной из закона действия масс константой химической реакции. Так закон действия масс получил свое термодинамическое обоснование. Вант-Гофф вывел также зависимость константы реакции от температуры, получившую название уравнения изобары химической реакции. Он показал, что знак и крутизна этой зависимости определяются знаком теплового эффекта реакции, чем термодинамически обосновал принцип смещения равновесия Ле-Шателье-Брауна (1884). [c.317]


    Активными называются вещества, в результате превращения которых в процессе реакции получается электрическая энергия. Обычно активным веществом гальванического элемента является отрицательно заряженный электрод - анод, на котором идет реакция окисления. На положительно заряженном электроде - катоде идет реакция восстановления. При работе химического источника тока отрицательно заряженные частицы (анионы) перемещаются к аноду, а положительно заряженные ионы (катионы) движутся к катоду. Количественное соотношение между химическим превращением вещества на электродах и электрической энергией определяется законами Фарадея. [c.35]

    Для промышленного производства электрической энергии на тепловых электростанциях также используется химическая энергия реакции взаимодействия окислителя (кислорода воздуха) с восстановителем (топливо). Однако в этом случае превращение энергии идет сложным путем химическая энергия превращается сначала в теплоту, затем в механическую и лишь после этого — в электрическую энергию. Максимальная электрическая работа, получаемая при таком превращении, определяется тепловым эффектом реакции (Qp = AЯ)  [c.602]

    Изменение внутренней энергии dU в процессе химического превращения происходит, согласно первому закону термодинамики, за счет поглощения (или выделения) теплоты 6Q и совершения работы бЛ. Запишем аналитическое выражение первого закона термодинамики в форме [c.5]

    Получим уравнение первого закона термодинамики. ДЯ р в данном случае является мерой общего изменения энергии при превращении 1 моля вещества в соответствии с уравнением химической реакции. ДО р — работа, совершаемая реакцией, а 7"Д5< р — обратимая теплота. Найдем из последнего уравнения Д5 р  [c.268]

    Слагаемые, содержащие собственные коэффициенты проводимости 11 и 1ц, характеризуют рассеяние свободной энергии в процессе миграции компонентов под действием внешней движущей силы (—Ац,), эти величины всегда положительны в силу условия ,/>0 [см. (1.10)]. Последняя сумма в выражениях (7.69) и (7.70) оценивает рассеяние свободной энергии в цепи химических превращений. Сумма слагаемых, содержащая перекрестный коэффициент Ь г, равна работе перемещения компо- [c.250]

    Для любого процесса в живом организме необходима энергия, которая получается при протекании химических реакций внутри клетки. Основу биохимических процессов составляют химические превращения, в частности реакции окисления и восстановления. Биологическое окисление служит, таким образом, основным источником энергии для ряда внутренних биологических изменений. Многие из протекающих при таком окислении реакции заключаются в сжигании компонентов пищи, например сахаров или липидов, что дает энергию, используемую затем для осуществления таких важных процессов л<изнедеятельности, как рост, размножение, поддержание гомеостаза, мускульная работа и выделение тепла. Эти превращения включают также связывание кислорода дыхание — это биохимический процесс, в результате которого молекулярный кислород восстанавливается до воды. При метаболизме энергия сохраняется аденозинтрифосфатом (АТР), богатым энергией соединением, которое, как известно, служит универсальным переносчиком энергии. [c.14]

    Изменение внутренней энергии в процессе химического превращения вещества происходит, как и в других случаях, путем поглощения (или выделения) теплоты и совершения работы. Последняя обычно мала она может быть вычислена или ею можно пренебречь. Теплота же реакции часто значительна она может быть во многих случаях непосредственно измерена. Изучением теплот химических реакций занимается термохимия. [c.56]


    До сих пор в этой главе рассматривались химические следствия закона сохранения массы и почти ничего не говорилось об энергии. Но закон, согласно которому теплоты реакций аддитивны и энергия процесса не зависит от того, проводится ли он в одну или несколько стадий, играет в химии очень важную роль. Теплота и работа являются различными формами энергии и измеряются в одинаковых единицах. Если вы совершаете работу над каким-либо телом или совокупностью тел, можно повысить энергию этой системы или нагреть ее в зависимости от того, каким образом совершается работа. Когда мы поднимаем тяжелый предмет, работа превращается в его потенциальную энергию, а трение приводит к превращению работы в теплоту. И наоборот, при падении тяжелого предмета энергия превращается в теплоту, а при работе автомобильного двигателя выделяемая в нем теплота превращается в работу. Химиков обычно гораздо больще интересует тепловая форма энергии, а не работа их занимает теплота, которая может поглощаться или выделяться при протекании химической реакции. [c.87]

    Формулировки первого закона термодинамики. Внутренняя энергия и энтальпия. В 1840—1849 гг. Джоуль впервые с помощью разнообразных и точных опытов установил эквивалентность механической работы и теплоты AIQ = J, где J — механический эквивалент теплоты — постоянная, не зависящая от способа и вида устройств для превращения работы А в теплоту Q . В дальнейшем было доказано постоянство отношений других видов работы к теплоте, введено обобщающее понятие энергии и сформулирован закон сохранения и эквивалентности энергии при всевозможных взаимных превращениях различных видов энергии переход одного вида энергии в другой совершается в строго эквивалентных количествах в изолированной системе сумма энергий есть величина постоянная. Первый закон термодинамики является законом сохранения энергии в применении к процессам, которые сопровождаются выделением, поглощением или преобразованием теплоты в работу. В химической термодинамике действие 1-го закона распространяется на ту универсальную форму энергии, которая называется внутренней энергией. [c.73]

    Затраты на передел исходных материалов — это денежное выражение затрат на получение единицы продукта из печного комплекса. По данному показателю экономическая эффективность печных комплексов может быть достигнута 1) экономией энергетических ресурсов (топлива и электрической энергии) при осуществлении термотехнологических процессов 2) совершенствованием термотехнологических процессов в части получения качественного продукта, полноты проводимых физических и химических превращений исходных материалов, получения качественных побочных продуктов, находящих сбыт 3) увеличением срока эксплуатации печей за счет качественного выполнения футеровочных и монтажных работ  [c.123]

    Он определяет переход вещества из 2-ой фазы в 1-ую, причем этот процесс проходит самопроизвольно. Эти неравенства позволяют сделать такой общий вывод вещество переходит из той части системы, в которой химический потенциал достаточно высок, в ту часть системы, где потенциал вещества (фазы) более низок. Такой переход веществ осуществляется спонтанно и сопровождается убылью химической энергии в одной части системы и возрастанием ее в другой части. Избыток химической энергии по сравнению с равновесным значением может явиться источником работы в необратимом процессе и источником максимально полезной работы в обратимом процессе. Движущей силой перехода компонентов из одной фазы в другую или химического превращения вещества является разность химических потенциалов Дц=ц1 — 1 ". При равновесии Дц=0. [c.148]

    В практике горного дела необходимо учитывать многие химические реакции. Так, воздействие влаги на каменный уголь, хранящийся на воздухе, может привести к самовозгоранию. Поэтому при создании многих промышленных процессов необходимо знать условия и направление протекания тех или иных химических реакций. Как и все явления природы, химические реакции сопровождаются изменениями энергии, например выделением или поглощением тепла, излучением и т. п. Поэтому законы, определяющие течение химических превращений, связаны с законами превращения энергии. Эти законы составляют предмет особой науки — термодинамики. Ее приложение к химии называется химической термодинамикой. Основные законы термодинамики вытекают из многовековой практики человечества. Ее первый закон устанавливает невозможность создания машины, которая производила бы работу без затраты энергии —так называемого вечного двигателя первого рода. Второй закон термодинамики указывает на невозможность существования вечного двигателя второго рода, т. е. периодически действующей машины, которая производила бы работу за счет охлаждения окружающей среды. Такая машина могла бы, например, использовать неограниченные запасы энергии морей и океанов. [c.14]

    Исторически термодинамика возникла при изучении превращений теплоты в механическую работу. Затем объектом изучения стали количественные соотношения между теплотой и различными формами энергии. Химическая термодинамика отличается тем, что она изучает превращения химической энергии в теплоту, работу и другие формы энергии. Объектами исследования химической термодинамики являются тепловые балансы физико-химических процессов, фазовые и химические равновесия, свойства веществ в растворах. [c.18]

    Отметим одно важное обстоятельство, связанное с преобразованием энергии химической реакции в электрическую. Величина —ДОр.т- определяет верхний предел превращения энергии химической реакции в полезную работу. Этот предел может быть реализован при проведении реакции равновесным способом в гальваническом элементе. Коэффициент полезного действия [c.228]

    Если через электрохимическую цепь протекает электрический ток /, то напряжение на концах цепи Е, не равно ее э. д. с., т. е. Е/ф Е, о-Причем если цепь работает как источник тока, который расходует свою энергию на внешней нагрузке, то Е <.Еа если цепь работает как электролизер, т. е. использует подаваемую извне электрическую энергию для осуществления химических превращений веществ, то Е,> >Е, о- Реализуемая мощность источника тока / /оказывается меньше его теоретической максимальной мощности 1Е, о расходуемая при проведении электролиза мощность / / больше теоретически необходимой 1Е, о- Таким образом, к. п. д. при работе электрохимических систем меньше 100%. [c.169]

    Для упрощения в таких схемах обычно опускается внешняя цепь. Как видно, внутри гальванического элемента идет химическая реакция, а во внешней цепи элемента протекает электрический ток, т. е. в гальваническом элементе происходит превращение химической энергии в электрическую. При помощи гальванического элемента можно совершить электрическую работу за счет энергии химической реакции. [c.187]

    Как и всякая другая разновидность энергии, лучи-стая энергия обладает -опособностью преобразовываться в любые виды энергии тепловую, механическую, электрическую или энергию химических превращений, затрачиваясь в последнем случае на протекание теплопотребляющих химичеаких реакций. -Как уже упоминалось в своем месте, зеленое вещество растений — хлорофилл —-апоообствует тому, чтобы улавливаемая растением солнечная энергия не переходила в подавляющем -своем количестве в тепло и не приводила -бы, таким образом, к губительному для растений повышению температуры, а производительно тратилась бы в виде химической эяер1гии на созидательную работу построения новых сложных молекулярных сооружений, разбиравшихся в -предыдущей главе. [c.55]


    Любой из перечисленных признаков мог бы служить критерием осуществимости процесса. В частности, можно было бы использовать для этой цели энергию данного вида или ее фактор интенсивности и утверждать следующее самопроизвольные процессы идут в сторону уменьшения энергии и выравнивания фактора интенсивности в разных частях системы. Достижение минимума энергии и одинакового значения фактора интенсивности служит признаком конца процесса, т. е. условием равновесия. Однако разнообразие факторов интенсивности затрудняет общее рассмотрение проблемы возможности процесса и равновесия. Без специального анализа неясно также, какая величина является фактором интенсивности для химических превращений. Что касается энергии, то она может быть искомым критерием только для чисто механических процессов, в которых превращение энергии в работу (и обратно) происходит без участия теплоты (свободное падение тела, течение невязкой жидкости, сжатие растянутой стальной пружины и т. д.). Кроме того, имеются процессы, которые идут самопроизвольно, хотя не сопровождаются изменением энергии (расширение идеального газа в пустоту, диффузионное смешение газов, растворение полиизобутилена в изооктане, реакция изотопного замещения Юа + и др.). В таких процес- [c.90]

    К электрохимическим, или гальваническим, элементам относятся системы, в которых химическая энергия определенного физико-химического процесса превращается е полезную электрическую работу. Обратный процесс — химическое превращение, на возбуждение и поддержание которого расходуется электрическая энергия, — происходит в электролизерах, или электролитических ячейках. [c.280]

    Электрохимическая поляризация. При электролизе происходит химическое превращение в результате протекания электрического тока через электролит. Этот процесс противоположен протекающему в гальванических элементах, производящих работу. При электролизе затрачивается энергия внешнего источника, который обеспечивает прохождение постоянного тока через раствор или расплав. При этом иа отрицательном электроде, который принято называть катодом, разряжаются катионы, а на положительном электроде— аноде разряжаются анионы. Прохождение тока вызывает изменение электрического состояния электродов и их потенциалов. Разность между потенциалом электрода, когда через систему протекает постоянный ток, и потенциалом при равновесии и том же электролите называется поляризацией. Таким образом, протекание через электролит более или менее значительного постоянного тока делает систему неравновесной. [c.262]

    Экспериментальное обнаружение эквивалентности различных форм энергии послужило основой для вывода о том, что энергия сохраняется во всех физических и химических превращениях. Представление о сохранении тепловой энергии формулируется в виде первого закона термодинамики. Принято считать, что в системе, которая получает извне определенное количество тепловой энергии д, происходит изменение внутренней энергии АЕ вместо этого система за счет полученной энергии может выполнить над своим окружением некоторую работу н . В общем случае поступившая в систему извне тепловая энергия может быть частично израсходована на изме- [c.305]

    Сложности в подборе подходящего лазера для возбуждения UFe инициировали работы по синтезу новых молекулярных соединений урана. Весьма перспективными могут оказаться попытки синтезировать молекулу с полосой поглощения в районе 10 мкм, попадающую в зону генерации мощных СОг-лазеров. Другое возможное направление развития проблемы — это синтез слабосвязанных молекул ураиа, с тем чтобы лазерная энергия, идущая на химическое превращение молекулы, была меньше, чем для UFe. Эти Новые направления оживили работы по синтезу молекулярных соединений урана. [c.269]

    Формулы (11.15) — (П.17) являются чрезвычайно важными в термодинамике однако они выражают дифференциалы II, Р, С для процессов, происходящих в системах, в которых исключены химические превращения, приводящие к изменениям масс составных частей этих систем. Если н в в системе возможны химические процессы, то следует учесть еще изменение с1и, вызванное изменением этих масс. Пусть масса составных частей системы будет т , Тоа, т ,. . . , / г . Ясно, что изменение внутренней энергии при бесконечно малом процессе будет определяться не только нагревом [первый член в формуле (11.17) и работой расширения [второй член в формуле(П.17)], но и работой внутренних сил, вызванной переходом одних составных частей в другие. Если масса первой составной части изменяется при нашем процессе на (1т , то вызванное этим изменение внутренней энергии будет, конечно, пропорционально йт-х и может быть записано так где р-1 — коэффи- [c.16]

    Этот раздел, посвященный вопросам деструкции полимерных цепей под действием излучения, так же как и раздел А главы IX, в котором обсуждаются вопросы радиационного сшивания полимеров, ограничены рассмотрением главным образом действия ионизирующего излучения на синтетические полимеры. В тех случаях, когда описывается действие излучения на природные полимеры, радиационно-химические превращения последних рассматриваются независимо от их биологических функций или среды. Вопросы действия на полимеры ультрафиолетового света упоминаются в этой главе только эпизодически с целью сопоставления фотохимических реакций с радиационно-химическими. Эти вынужденные ограничения обусловлены необходимостью сосредоточить основное внимание на результатах исследований, посвященных действию ионизирующих излучений на синтетические полимеры, поскольку эти исследования составляют наиболее многочисленную группу работ в области изучения химического действия лучистой энергии. Рассмотрение результатов экспериментальных исследований в этой области может оказаться полез- [c.95]

    Самые ранние попытки создания таких методов расчета энергий активации были предприняты Лондоном [110], и они приводили к чрезвычайно приближенным результатам. Последующие попытки Вилларса [111], Эйринга [112] и Эйринга и Поляни [113] улучшить точность метода с помощью исполь- чования эмпирических приемов не были плодотворными, и успех работы будет зависеть от развития техники квантовомеханических расчетов. Отоцаи [114] высказал предположение, что длина связи между атомами в молекуле, претерпевающей химическое превращение, определяется точкой перегиба на кривой потенциальной энергии для двухатомной молекулы. Вместе с дополнительными предположениями о конфигурациях комплекса (не очень отличающихся от допущений метода Эйринга) это позволяет вычислить 1нергии активации для трех- и четырехатомных систем результаты, полученные по этому методу, находятся в несколько лучшем согласии с экспериментальными данными. [c.279]

    Из этого соотношения следует, что работа сил трения йА для выделенного элементарного объема системы превраш,ается в теплоту dQ, а кроме того, расходуется на увеличение внутренней энергии на химическое взаимодействие (%1с1п1г) и некоторые другие виды превращений. Указанные параметры тесно связаны между собой. Исходя из энергетической гипотезы, изнашивание (отделение) материала наступает тогда, когда внутренняя энергия 7 достигает критического значения. Однако в общем случае в присутствии химически активных компонентов износ определяется также глубиной химических превращений. В свою очередь, оба перечисленных фактора зависят от dQ. [c.250]

    Тепловая энергия, получаемая в нечи, должна покрывать ее расходы при работе печей. Тепловая энергия в печах состоит из тепловой энергии, расходуемой непосредственно для проведения химического или физико-химического превращения материалов, и тепловой энергии, компенсирующей потери (с продуктами, отходящими газами и через футеровку). В печах используется тепло, полученное от сжигания топлира и от преобразования электрической энергии в тепловую, и тепло от экзотермических реакций. [c.13]

    Если придать системе некоторое количество теплоты извне, причем объем системы останется постоянным, то сообщенная ей теплота пойдет только на увеличение внутренней энергии, которое выразится в повышении температуры, в изменениях агрегатного состояния, в химических превращениях и т. п. Если же объем системы может изменяться, то наряду с поглощением или выделением теплоты система может совершать механическую работу (расширение) или над ней мол ет совершаться работа (сжатие), причем сообщаемая системе 1Сплота расходуется на увеличение внутренней э[1ергии и не совершает работы расширения. Увеличение внутренней энергии системы в любом процессе равно количеству сообщаемой системе теплоты за вычетом совершенной системой работы. [c.84]

    Однако широкое внимание эта проблема привлекла только после публикации работ С.Ван Хеердена [433], О. Билу и Н. Амундсона [210]. Появление множественных стационарных состояний обычно обусловлено нелинейной природой скоростей реакций и наличием некоторых форм обратной связи. Обратная связь может быть создана либо самоускоряющей, либо самоингибирующей стадией реакции или обратной связью материала или энергии. В некоторых случаях обратная связь создается изменениями физических свойств или констант скоростей реакций в ходе химического превращения [201,239,325,364,438]. [c.225]

    Коэффициент полезного действия. Эффективность работы топливного элемента характеризуется степенью превращения химической энергии горючего вещества в электрическую энергию. Максимальный к. п. д. г/тах достигается тогда, когда вся энергия химической реакции переходит в электрическую. Тогда, пользуясь уравнением ГиббсаГельмгольца, можно вывести уравнение [c.50]

    При сравнении же металлов в ряду напряжений за меру химической активности принимается работа превращения металла, находящегося в твердом состоянии, в гидратированные ионы в водном растворе. Эту работу можно представить как сумму трех слагаемых энергии атомизации — превращения кристалла металла в изолированные атомы, энергии ионизации свободных атомов металла и энергии гидратации образующихся ионов. Энергия атомизации характеризует прочность кристаллической решетки данного металла. Энергия ионизации атомов — отрыва от них валентных электронов — непосредственно определяется положением металла в периодической системе. Энергия, выделяющаяся при гидратации, зависит от электронной структуры иона, его заряда и радиуса. Ионы лития и калия, имеющие одинаковый заряд, но различные радиусы, будут создавать около себя неодинаковые электрические поля, Поле, возникающее вблизи маленьких ионов лития, будет более си.пьным, чем поле около больших ионов калия. Отсюда ясно, что ионы лития будут гидратироваться с выделением большей энергии, чем ионы калия. [c.329]

    Таким образом, одну и ту же реакцию можно осуществить двумя различными способами. Какой из этих способов выгоднее с точки зрения превращения энергии химической реакции в работу В первом способе при сжигании водорода в калориметрической бомбе (V = onst) при 298 К уменьшение внутренней энергии равно количеству выделившегося тепла —Ш = = 68 ккал/моль, а работа равна нулю. [c.154]

    Необходимо отметить существенное различие первых двух внешне похожих, но в действительности весьма отличных условий. Энергия — функция состояния. При каждом температуре и заданном объеме равновесная система имеет вполне определенную энергию. Для термохимических целей необходимо и достаточно, чтобы температуры исходных веществ и продуктов реакции были одинаковыми, независимо от их промежуточных значений при проведении реакции. Это делает достаточно точным важный калориметрический метод — определение теплоты сгорания в калориметрической бомбе, когда температура системы сильно повышается в процессе сгорания, но в конце опыта совокупность продуктов сгорания оказывается при температуре, близкой к исходной. Иную роль играет условие V= onst. В акте химической реакции работа равна нулю только при постоянстве объема на всех этапах осуществления химического превращения, [c.30]

    Особенно удивительным следует считать то, что передача аденозинтри-фосфатом свободной (способной произвести химическую работу) энергии оказывается возможной не для протекания вполне определенных специальных (специфически обусловленных набором случайностей) химических реакций, а совершается как-то универсально АТФ является действенным источником свободной энергии для очень большого набора разнообразных химических процессов, делая осуществимыми многие самые трудные и важные для жизни химические превращения к этому списку реакций можно причислить и процессы дыхания, и фотосинтез, и сокращение мышц, и синтез белков, а также нуклеиновых кислот с их наследственной информацией и т. п. [c.330]

    Так как все вещества отличаются между собой запасом внутренней энергии, то при любом химическом превращении происходит изменение этой величины. Если реакция совершается при постоянном объеме, то все изменение внутренней энергии, как это видно из уравнения (1.10), проявляется только в виде тепла (работа расширения отсутствует). Так, прн горении водорода в стальной бомбе с образованием моля жидкой воды при 25° С выделяется 68317 кал. Эта величина называется тепловым эффектом реакции при постоянном объеме. Она показывает, что внутренняя энергия моля воды на68317кал меньше суммы внутренних энергий моля водорода и половины моля кислорода. Это записывается в виде термохимического уравнения [c.13]

    Как отмечалось выше, гальванические элементы являются источниками электричества, которое получается в результате освобождения энергии при протекании самопроизвольной химической реакции. В противоположность этому сушествуют электролитические ячейки, в которых в результате затраты электрической энергии происходят химические превращения. Эти превращения, представляю-ш ие собой реакции между ионами и электронами, приводят к разложению электролитов, находящихся в растворе или в виде расплава. Например, при пропускаиии постоянного тока через раствор СиСЬ на электроде, к которому подводятся электроны (катод), происходит реакция u +-f 2е = Си (т), т. е. выделяется металлическая медь. На электроде, с которого электроны отводятся (анод), разряжаются ионы хлора С1-, т.е. идет реакция 2С1- = СЬ(г)+2е, и выделяются пузырьки газообразного хлора. Таким образом, на катоде происходят реакции восстановления, а на аноде — окисления. Подобные процессы называются электролизом. Электролиз имеет важное практическое значение. С его помощью получают из водных растворов многие металлы, например медь, никель и др. Такие металлы, как алюминий, магний, кальций, получают электролизом расплавленных солей или их смесей. Разрабатываются способы получения железа электролизом из его руд (.4. Б. Сучков). При помощи электролиза наносят защитные покрытия более благородных металлов на менее благородные (хромирование и никелирование железа). В отличие от работы гальванического элемента реакции, протекающие при электролизе, происходят в условиях, да- [c.133]

    Эти механохимические процессы сводятся к превращению химической энергии в механическую работу. Имеется далеко идущее сходство АТФ-азной активности митохондриальных мембран и актом иозиновой сократительной системы скелетных мышц. Сходны их механохимические свойства — сокращение под действием АТФ. Можно было думать, что в мембранах митохондрий присутствуют сократительные белки, подобные актомнозину. Эта гипотеза была подтверждена — сократительный белок удалось выделить из митохондрий. Показано, что сократительные белки участвуют в митохондриальной механохимии, но оказалось, что здесь играет существенную роль и липид мембран — фосфатидилинозитол. [c.431]

    Четвертый, не менее существенный аргумент состоит в том, что сколько-нибудь сложная машина может работать непрерывно лишь путем периодического преобразования энергии в работу. Периодичность свойственна любым движущимся устройствам — одним из величайших изобретений Homo sapiens было колесо (см., впрочем, с. 413). Очевидно, что сложная живая система, обладающая автономным существованием, эволюционно достигает уровня периодически работающей машины — мы имеем в виду системы дыхания и кровообращения. Движения животного — бег гепарда, прыжки кенгуру, полет птицы, плавание рыбы, скольжение змеи, движение ресничек инфузории — представляют собой периодические, зачастую автоволновые процессы превращения химической энергии в механическую работу (гл. 12). Теоретическое и экспериментальное исследование химических и биологических периодических явлений имеет поэтому весьма важное вначение для биофизики, биохимии, физиологии, для биологии в целом. [c.515]

    Конечной целью химических процессов, протекающих в живой природе, чаще всего является либо синтез сложных органических молекул из простых, доступных живому организму предшественников, либо деградация таких молекул до простых соединений, выводимых из организма. Важную роль химические превращения играют в 9беспечении жизнедеятельности организма энергией, необходимой для совершения различных видов работы. В этом случае с целью уменьшения бесполезного рассеяния энергии в теплоту желательно разумное приближение к обратимому протеканию превращения. Каждая такая задача решается системой последовательных реакций, оптимизированной по химическому содержанию и энергетике каждого этапа и осуществляемой каскадом ферментов. Как правило, такие системы подвержены различным регуляторным воздействиям, т.е. в зависимости от конкретной биологической ситуации они могут включаться и выключаться или, по крайней мере, скорость и масштаб их функционирования могут изменяться в весьма широких пределах. Организация химических превращений веществ в виде регулируемых систем каталитических реакций — важнейшая особенность химии живых организмов. [c.12]

    Химические превращения, протекающие в полимерах при действии на них лучистой энергии, уже давно интересовали человека. До последнего времени из различных видов излучений внимание исследователей привлекал главным образом свет. Та роль, которую играет свет в биохимических превращениях полимеров, а также в процессах их деструкции или старения, определяет необходимость того, что в будущем, как это было и в прошлом, большое число исследований в области полимерной химии будет по-прежнему посвящено исследованию фотохимических проблем. Преобладающее значение при этом приобретают работы по использованию световых воздействий в определенных контролируемых условиях для модификации свойств полимеров. Однако в последнее десятилетие еще более интенсивно, чем фотохимические превращения полимеров, исследовались вопросы взаимодействия полимерных веществ с ионизирующими излучениями (излучениями высокой энергии). Развитие исследований в этой области в большой степени связано с созданием промышленной ядерной технологии и новых более совершенных электронных и ионных ускорителей. Но оно было вызвано также и тем ожидаемым многообразием химических реакций, протекание которых должно стать возможным под действием излучений высокой энергии. Одновременное присутствие электронов, ионов, свободных радикалов и молекул в возбужденных и термолизованных состояниях явилось причиной появления многочисленных гипотез, имеющих целью объяснение наблюдаемых радиационно-химических превращений. Все более сложные экспериментальные исследования обеспечили получение данных, которые позволяли проверять и изменять эти гипотезы. Как будет видно из дальнейшего рассмотрения, ни один из предложенных механизмов нельзя считать однозначно доказанным. [c.95]


Смотреть страницы где упоминается термин Энергия химическая, превращение в работу: [c.18]    [c.345]    [c.65]    [c.65]    [c.182]    [c.126]   
Общая химия (1968) -- [ c.191 ]




ПОИСК





Смотрите так же термины и статьи:

Превращения химические

Работа и энергия

Химическая энергия

Энергия Работа и энергия



© 2025 chem21.info Реклама на сайте