Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тетраэтилсвинец реакции

    Хлористый этил можно получать также хлорированием этана — процесс ведут в реакторах, используемых для синтеза хлористого метила (см. рис. 3 и 4), применяя в качестве катализатора тетраэтилсвинец. Хлорирование этана осуществляют и в газовой фазе — в псев-доожиженном слое активного угля. Реакция в этом случае проводится ири 450 °С и объемном соотношении этан хлор = 8 . 1. Этан вступает в реакцию с хлором значительно легче, чем метан, что позволяет использовать для хлорирования даже природный газ, содержащий только 10% этана и 90% метана. В таких условиях этан хлорируется почти полностью, а образование хлорпроизводных метана при этом практически исключается. [c.33]


    Как мы видим, катализатор представляет собой вещество, которое ускоряет химическую реакцию, обеспечивая более легкий путь ее протекания, но само не расходуется в реакции. Это не означает, что катализатор не принимает участия в реакции. Молекула РеВгз играет важную роль в многостадийном механизме рассмотренной выше реакции бромирования бензола. Но в конце реакции РеВгз регенерируется в исходной форме. Это является общим и характерным свойством любого катализатора. Смесь газов Н2 и О2 может оставаться неизменной при комнатной температуре целые годы, и в ней не будет протекать сколько-нибудь заметной реакции, но внесение небольшого количества платиновой черни вызывает мгновенный взрыв. Платиновая чернь оказывает такое же воздействие на газообразный бутан или пары спирта в смеси с кислородом. (Некоторое время назад в продаже появились газовые зажигалки, в которых вместо колесика и кремня использовалась платиновая чернь, однако они быстро приходили в негодность вследствие отравления поверхности катализатора примесями в газообразном бутане. Тетраэтилсвинец тоже отравляет катализаторы, которые снижают загрязнение атмосферы автомобильными выхлопными газами, и поэтому в автомобилях, на которых установлены устройства с такими катализаторами, должен использоваться бензин без примеси тетраэтилсвинца.) Каталитическое действие платиновой черни сводится к облегчению диссоциации двухатомных молекул газа, адсорби- [c.303]

    При жидкофазном нитровании парафинов энергия, необходимая для ионного разрыва химических связей, сообщается растворителем, который благодаря своему полярному характеру сольватирует ионы. Как отмечает Бахман с соавторами [2] и Уотерс [62], большинство газовых реакций протекает по радикальным механизмам. Бахман с соавторами 2] в недавно опубликованных статьях привел много экспериментальных данных в пользу свободно радикального механизма реакций, идущих при парофазном нитровании пропана и бутана при 420—425°. Они показали, что прибавление ограниченных количеств кислорода или галоида, которые, как известно, увеличивают концентрации свободных радикалов в паровой фазе, также повышает степень нитрования тетраэтилсвинец, образующий при нагревании этильные радикалы, также благоприятствует нитрованию, Существенно также, что факторы, понижающие концентрацию своб.дных алкильных радикалов в паровой фазе, например присутствие окиси азота или чрезмерные количества кислорода или галоидов, снижают и степень нитрования. [c.81]

    Сплав свинца с приблизительно 10% натрия и небольшим количеством магния расплавляют в чугунных ящиках в атмосфере азота. Затем этот сплав дробят на куски размером с горошину и загружают в автоклавы, где под повышенным давлением при 50—75° проводят реакцию с хлористым этилом. В большинстве случаев добавляют также катализатор, например хлористый алюминий или хлорное железо. К концу реакции температуру повышают до 100°. После сброса давления в автоклаве тетраэтилсвинец отпаривают водяным паром для удаления газообразных углеводородов и избытка хлористого этила [182]. Как видно из уравнения реакции, в тетраэтилсвинец превращается лишь около 25% свинца остальное количество после переработки возвращается в процесс. [c.213]

    При длительном хранении бензина тетраэтилсвинец постепенно окисляется, разлагается и вступает в реакцию с продуктами окисления углеводородов. В результате образуется белый осадок, ко-  [c.105]

    Особое явление — голубое пламя — может появляться непосредственно перед самовоспламенением [115, 131, 132]. Оно связано с разрушением карбонильных соединений. Тетраэтилсвинец мало влияет на возникновение реакций обоих типов, но, очевидно, воздействует на продукты термонейтральной реакции в некоторый момент между образованием продукта, вызывающего удар, и самим ударом. Следовательно, благодаря присутствию добавки самовозгорание тормозится и происходит нормальное горение. Возможно, что ТЭС вызывает распад свободных радикалов, образующихся при разложении перекисей. Было показано, что добавка антидетонатора деактивирует свободные радикалы, представляющие собой носителей цепи, в результате реакции распада карбонильных ионов в зоне голубого пламени, и замедляет таким образом последующие реакции карбонильного соединения [133]. [c.407]


    Активными антидетонаторами могут быть только те металлы, которые образуют высшие и низшие окислы. Существенную часть механизма действия антидетонаторов составляет цикл окислительно-восстановительных реакций, включая распространение цепи. Эгертон [192] показал, например, что гидроперекись трет-бутила легко разлагается под действием РЬОг, но никак не РЬО. Монометиланилин при 170° С не разлагает гидроперекись трет-бутила, но воздействует на реакции предгорения так же, как и тетраэтилсвинец [103]. До последнего времени считалось, что подавление детонации посредством анилина и его производных происходит по иному механизму, чем при действии металлоорганических соединений, но сейчас полагают, что при их действии также происходит разложение способствующих распространению цепи свободных радикалов это может происходить или под действием слабо связанных с бензольным кольцом я-элек-тронов [193] или, что более вероятно, — в результате выделения водорода, связанного с атомом азота [194, 195]. [c.413]

    Каталитическое хлорирование. Галоидирование парафинов катализируется углеродом, металлами, солями металлов и соединениями, разлагающимися с образованием свободных радикалов. К последним относятся тетраэтилсвинец, гексафенилэтан и азометан, действие которых заключается в инициировании свободно-радикальной цепи. Такие металлы, как медь, по-видимому, частично превращаются в хлориды, являющиеся эффективными катализаторами. Для различных реакций хлорирования применялись хлориды меди, церия, железа, сурьмы, алюминия и в меньшей степени титана и олова. Каталитическое действие их усиливается при нанесении соли металла на сильно развитую поверхность, например на. стекло, пемзу, окись алюминия или силикагель. [c.62]

    Каталитическое хлорирование основано на применении переносчика хлора, такого как йод [2], сера [3], фосфор, сурьма и другие, в виде соответствующих хлоридов, которые растворяются в хлорируемом углеводороде или прн хлорировании газообразных парафиновых углеводородов — в растворителе. Применяются исключительно элементы, имеющие по крайней мере два значения валентности. В качестве гомогенных катализаторов могут также применяться вещества, образующие радикалы, как, например, диазо-метап, тетраэтилсвинец и гексафенилэтан [4]. Они обладают способностью разделять молекулу хлора на атомы, которые тотчас ке вызывают возникновение цепной реакции. [c.113]

    У обычных бензиновых углеводородов, например, у изооктана и нормального гептана, реакция происходит при низкой температуре, предпламенное состояние можно разделить на две стадии, во время которых образуются перекиси, а затем создаются соединения, индуцирующие детонацию. Между тем, соединения, подобные метану или бензолу, не подвергаются низкотемпературному окислению этого типа. Различные суждения существуют по вопросу о том, влияет ли и в какой степени на низкотемпературное окисление тетраэтилсвинец. Имеется немало веских доказательств в пользу того, что активный агент — коллоидный туман РЬО последняя благодаря контакту между поверхностями разрушает цепи, которые в противном случае вызвали бы вторичное окисление альдегидов таким образом, ТЭС влияет только на вторую стадию окисления [125, 182]. Во всяком случае совершенно очевидно, что он замедляет начало конечной стадии самоокисления. [c.412]

    Больше всего внимания было уделено подбору катализаторов для прямого окисления этилена в окись этилена. Хотя заменители серебра и были найдены, серебро продолжает оставаться основной составной частью промышленных контактов. Запатентовано настолько большое число методов получения и активации катализаторов и предложено так много различных активаторов и носителей, что очень трудно выбрать из них наилучшие. Имеются предложения применять для подавления реакции полного окисления пары некоторых органических веществ, вводимые непрерывно в реактор вместе с исходной газовой смесью. В числе этих веществ упоминаются дихлорэтан [6], тетраэтилсвинец и другие антидетонаторы [7]. [c.159]

    Реакцию проводят в эмалированных аппаратах, исключая примеси, содержащие С1 и 8, отравляющие катализатор. Газообразные продукты реакции содержат 2% окиси этилена. Выход окиси этилена равен 50% от количества этилена, превращенного в продукты окисления. Для того, чтобы увеличить выход, подавив полное окисление, применяют летучие ингибиторы окисления, например дихлорэтан, хлористый этил и тетраэтилсвинец (0,02% дихлорэтана в реакционной смеси увеличивает выход окиси этилена до 60%, снижая образование СО2). [c.167]

    В промышленном масштабе тетраэтилсвинец получают взаимодействием этилхлорида с натрий-свинцовым сплавом (схема 299). Реакция проводится с полной утилизацией свинца и протекает с выходами около 85% (считая на натрий). Алкилгалогениды спо- [c.206]

    Тетраэтилсвинец (ТЭС) (С2Ш)4РЬ—металлоорганическое соединение свинца, антидетонатор моторного топлива. Метод получения основан на реакции  [c.135]

    Кинетика окисления газообразных углеводородов сходна с кинетикой окисления водорода в том смысле, что также включает разветвленные цепные реакции, но она значительно сложнее. Для замедления слишком энергичного развития цепей (приводящего к детонации в двигателях внутреннего сгорания) в бензин вводят тетраэтилсвинец, который быстро реагирует с атомами и радикалами, что вызывает обрыв цепей. [c.313]

    Алкилирование пропилена изобутаном проводили при 400 °С под давлением 280—1050 кгс/см в присутствии 1,2,3-трихлорпро-пана и 1,2-дихлорпропана [10]. В результате получались 2,2-диметил-пентан и 2-метилгексан. С повышением давления образуется больше 2-метилгексана, что свидетельствует об уменьшении относительной скорости реакции третичного атома углерода. Другими катализаторами термического алкилирования под давлением являются тетраэтилсвинец [И] и перекиси (например, перекись бензоила [12], перекись третп-бутила [13]). [c.253]

    Известно, что тетраэтилсвинец является положительным катализатором при жидкофазном окислении авиационных бензинов,- в основном состоящих из предельных углеводородов [10]. Однако скорость окислительных реакций в крекинг-бензинах, т. е. углеводородных смесях, содержащих непредельные углеводороды, после добавки ТЭС может и замедлиться. Так, И. В. Рожков и Е. Н. Корнилова [11], изучая влияние ТЭС на окисление различных углеводородов атмосферным воздухом при 100°, показали, что средняя скорость поглощения кислорода (после индукционного периода) для ряда парафиновых, нафтено- 0 Тг ароматических углеводоро- [c.60]

    Для повышения детонационной стойкости бензинов к ним добавляют присадки, прерывающие цепные реакции окисления. В качестве такой присадки широко применяется тетраэтилсвинец РЬ(СаН5)4 в последнее время за рубежом начали применять также тетраметил-свинец РЬ(СНя)4 и некоторые соединения марганца. При 200° С тетраэтилсвинец (ТЭС) разлагается с выделением свинца, который [c.101]

    Для цепных реакций весьма характерно влияние очень малых добавок. Наряду с примерами малых примесей, пнициирующнх цепные реакции, таких, как следы паров Na в системе И +С). или следы влаги, необходимой для протекания цепной реакции окисления водорода и окиси углерода при взаимодействии с кислородом и др., имеются примеры, когда примеси в весьма малых количествах совсем прекращают процесс. Торможение цепной реакции такими веществами, называемыми и н г и бит о-р а м и, происходит путем обрыва цепи прп взаимодействии со свободными радикалами. Так, например, окисление сульфита натрия кислородом воздуха тормозится нри прибавлении следов спирта. Для предотвращения взрыва в двигателях внутреннего сгорания к жидкому топливу добавляют тетраэтилсвинец. Реакции осмоления пехгредельных веществ в бензине, окисления пищевых продуктов и др. иод влиянием воздуха и света предотвращаются рядом веществ, называемых антиоксидантами, которые в своем составе содержат фенольные, ароматические аминогрунны и другие активные функциональные группы. [c.183]


    Одновременно с собственно сульфохлорированием, как важнейшая побочная реакция, протекает только одно хлорирование углеродной цепи без одновременного присоединения двуокиси серы. При проведении сульфохлорирования в условиях рассеянного освещения, реакции сульфохлорирования и хлорирования углеродной цепи протекают с практически одинаковой скоростью, так что в молекуле на каждый атом серы приходится приморио двойное количество атомов хлора. Если реакция сульфохлорирования проводится в условиях облучения ультрафиолетовым светом или в присутствии образующих радикалы веществ, как перекиси, тетраэтилсвинец, диазомотап и т. п., хлорирование углеродной цепи приобретает второстепенное значение и практически идет только сульфохлорировашге. [c.137]

    Этан в количестве 100 мл/мин пропускают через охлажденный до 0° тетраэтилсвинец и подводят в реакционную стеклянную трубку, где он взаимодепствует с 50 мл/мин хлора, разбавленного 150 мл азота. Уже при температуре 132° хлор реагирует более чем на 95%. В отсутствие тетраэтилсвинца при прочих одинаковых условиях реакция ие протекает при термическом процессе одинаковая скорость хлорирования достигается лишь при температуре 250—290°. [c.152]

    Наиболее распространенной антидетонационной присадкой является тетраэтилсвинец (ТЭС). Способность ТЭС подавлять детонацию была открыта в 1921 г., а с 1923 г. начался массовый промышленный выпуск этого антидетонатора. Промышленный способ получения ТЭС основан на реакции свинцовонатриевого сплава с хлористым этилом  [c.8]

    В две колбы, содержащие по 175 мл полностью деаэрированного н-пентана, пропускают при 10° по 50 мл/мин хлора и 50 мл1мин углекислоты. В одну из этих колб подают углекислоту, предварительно прошедшую через промывалку, содержащую тетраэтилсвинец, в которой поддерживают температуру 25°. В колбе без катализатора реакция практически не протекает, в то время как во второй ко.лбе реакция протекает количественно. [c.152]

    Одна из возможностей сульфохлорирования без участия световой энергии заключается в том, что реакция проводится в присутствии веществ, образующих радикалы. Сюда относятся диазометан, тетраэтилсвинец 13], три фенил метая [14], азо- и гидразобиснитрилы [15], например а, а-азо-бис-( изо бутирояитрил). [16]. [c.368]

    На практике реакция ведется таким образом, что в сульфохлори-руемый углеводород, помимо хлора и двуокиси серы, вводят инертный газ, как, например, углекислоту или азот, который сначала пропускают через промывную колбу, содержащую тетраэтилсвинец. При этом инертный газ увлекает с собой в реагирующую жидкость некоторые небольшие количества тетраэтилсвинца. При 0° давление пара тетраэтилсвинца составляет 0,047 мм рт. ст., при 25°—0,377 мм рт. ст. При употреблении чистого углеводорода, чистых (црежде всего- не содержащих кислорода) хлора и двуокиси серы для получения 1 моля сульфохлорида требуется приблизительно 0,05 г тетраэтилсвинца. [c.369]

    Для некоторых смесей наблюдалась существенная зависимость UH от введения в смесь присадок. Хорошо известно, например, что введение в смесь СО-ьОз незначительных количеств воды, водорода, метана или других водородсодержащих соединений вызывает резкое возрастание значения Ын- Значение Ua для смеси СО-ЬОг равно 1 м/с, а после добавки 0,23% воды оно возросло до 7,8 м/с. Введение столь незначительного Количества воды практически не изменяет каких-либо физических свойств смеси, поэтому очевидно, что такой эффект обусловлен изменением химического механизма процесса. Наблюдалось увеличение на 53% скорости горения бутано-воздушной смеси в присутствии 1,48% озона. Присадки, инициирующие самовоспламенение смеси (этилнитрат, этилпероксид и др.), а также антидетонаторы (тетраэтилсвинец, нентакарбонилжелезо, ди-этилолово, тетраметилолово) не оказывают существенного влияния на скорость распространения пламени. Этот экспериментальный факт убедительно свидетельствует о том, что механизм реакций, протекающих в предпламенной зоне, существенно отличается от механизма предпламенных процессов при самовоспламенении (взрывном горении) смеси. [c.119]

    Большое влияние на режим работы контактного аппарата оказывает реакция полного окисления этилена, тепловой эффект которой почти в 10 раз больше теплового эффекта основной реакции. Для замедления реакции полного окисления к исходному сырью добавляют такие ингибиторы, как тетраэтилсвинец, дибромэтан, бензол, этанол, хлордифенил, хлорполифенил, этиленхлоргидрин, а при работе в кипящем слое используют твердые галогенпроизводные. [c.173]

    Промышленное окисление пропана и бутанов проводится в США на заводе Бишеп (В1зсЬор). Проводится здесь также и промышленное окисление этилена в окись этилена. Катализатором является серебро на носителе температура реакции 200— 300° окись этилена из отходящего газа сорбируется водой. Этилен обычно берется сильно разведенный инертными газами или воздухом нередко к нему добавляются дихлорэтан или тетраэтилсвинец, как вещества, подавляющие детонацию. Имеется патент [20] на интересный метод окисления пропилена в акролеин. Пропилен при 50—60° пропускается через кислый раствор сульфата окиси ртути, около 20% пропилена при этом реагирует, образуя с хорошим выходом акролеин, выделяющийся при подогреве до 100" [c.465]

    Для регулирования скорости и торможения разветвленных цепных реакций в реакционную смесь добавляют вещества, называемые замедлителями и ингибиторами обрывая цепи, они уменьшают скорость процесса. Таким образом ведет себя, например, тетраэти-ловый свинец, прибавляемый в небольших количествах к авиационным и автомобильным бензинам. Переходя вместе с бензином в парообразное состояние в камере двигателя, тетраэтилсвинец обрывает цепи при горении топлива. При хранении мономеров часто добавляют ингибиторы, чтобы предотвратить цепную реакцию самопроизвольной полимеризации. [c.357]

    Вещества, вводимые в химическую систему для связывания свободных радикалов или превращения их в малоактивные частицы, называют ингибиторами цепных реакций. Для этого часто используют тетраэтилсвинец и пентакарбонил железа (горение углеводородов), оксид азота (П) (термическое разложение углеводородов), нитрит натрия (полимеризация диолефинов), трихло-рид азота (газофазное хлорирование) и др. [c.183]

    В заключение отметим, что в настоящее время широкое распространение получают вещества, замедляющие нежелательные для нас процессы (например, коррозию металлов, прогоркание пищевых жиров, окисление каучуков и других полимеров), но в ходе реакции сами претерпевающие известные изменения. Такие вещества получили название ингибиторов (лат. пЫЬеге —удерживать). К числу ингибиторов относится, например, тетраэтилсвинец РЬ(С2Н5)4 — противодействует детонации топлива в двигателях внутреннего сгорания а-нафтол предохраняет крекинг-бензин от окисления и смолообразования, что понизило бы его качество, и т. д. [c.143]

    При необходимости замедлить нежелательную реакцию в систему вводят отрицательные катализаторы, или ингибиторы (тормозители). Действие их различно. Либо они связывают положительные катализаторы и тем мешают положительному катализу, либо вызывают обрыв цепей в цепных реакциях, либо адсорбируются на поверхности катализатора и действуют как яды. Ингибиторы в отличие от положительных катализаторов часто претерпевают необратимые химические изменения. Ингибиторами защищают металлы от коррозии (см. гл. VIII), тормозят окислительные процессы в минеральных и смазочных маслах и пищевых жирах, в жидком топливе. В бензин добавляют тетраэтилсвинец РЬ(С2Н )4 для замедления взрывной реакции в цилиндрах двигателей и т.д. [c.52]

    Наличие свободных органических радикалов при реакции в газовой фазе было доказано работами Ф. Панета, который пропускал через кварцевую трубку пары тетраэтилсвинца (С2Нб)4РЬ в быстром токе водорода. При нагревании участка трубки на ее стенке выделился металлический свинец и образовались свободные радикалы jHs. Если на небольшом расстоянии от этого места по течению газовой смеси таким способом был заранее нанесен свинец, то под действием радикалов он вновь давал тетраэтилсвинец и удалялся с внутренней стенки трубки. Зная скорость газового потока и наблюдая за появлением и удалением налета свинца, удалось вычислить, что период, в течение которого концентрация свободных радикалов этила падает в два раза, составляет 3-10 с. [c.457]

    В центральной части аппарата расположен графитовый анод 1. Вся центральная часть заполняется мелкими свинцовыми шариками, которые по существу и являются анодами. Таким образом, межэлек-тродное расстояние определяется толщиной изолирующей сетки 3. Электролит непрерывно циркулирует через ванну. Образующийся тетраэтилсвинец не растворим в электролите и собирается в нижней части анодного пространства, откуда его периодически отводят на очистку. Для восполнения вступившего в реакцию свинца через штуцер периодически вводят новые порции свинцовых гранул через этот же штуцер подают и этилмагнийхлорид. [c.326]

    Наибольщее распространение из них в свое время получил тетраэтилсвинец - Pb( 2Hs)4, механизм действия которого состоит в следующем. При повышенной температуре в условиях цилиндра это соединение, распадаясь, образует радикалы свинца и этильный. Последний является ингибитором пероксидооб-разования, а радикал свинца в атмосфере кислорода окисляется до диоксида свинца, реагирующего с уже образовавшимися пероксидами углеводородов и восстанавливающего их до оксидов, более стойких к самовозгоранию. В этой реакции образуются молекула воды и оксид свинца, который является нелетучим соединением и может отлагаться внутри цилиндра. Чтобы вынести из цилиндра двигателя с выхлопными газами оксид свинца, вместе с тетраэтилсвинцом в бензин можно вводить соеди-нение-выноситель (например, дибромэтан С2Н4ВГ2), образующий с оксидом свинца летучее соединение, выбрасываемое вместе с выхлопными газами. [c.180]


Смотреть страницы где упоминается термин Тетраэтилсвинец реакции: [c.94]    [c.148]    [c.413]    [c.423]    [c.350]    [c.354]    [c.385]    [c.48]    [c.105]    [c.730]    [c.210]   
Методы элементоорганической химии Германий олово свинец (1968) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Тетраэтилсвинец



© 2025 chem21.info Реклама на сайте