Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий хлористый реакции

    В качестве катализатора изомеризации в промышленности в первую очередь используют безводный хлористый алюминий. Хлористый водород безусловно необходим как промотор этой реакции. Чистый парафиновый углеводород не реагирует необходимо наличие следов олефинов, которые всегда присутствуют в техническом продукте (вполне достаточно 1 весовой части олефина на 10 000 весовых частей парафинового углеводорода) [18]. Если реакцию проводят при достаточно высокой температуре, когда всегда образуется небольшое количество олефинов, изомеризуется и совершенно чистый продукт. Однако степень изомеризации всегда бывает больше, если к парафиновому углеводороду заранее добавлено небольшое количество олефина. [c.517]


    Взаимодействием хлорпарафина с ароматическим углеводородом, как ксилол, нафталин И т, д., в присутствии безводного хлористого алюминия по реакции Фриделя — Крафтса. При этом в зависимости от условий процесса в ароматическое ядро вступает одна или несколько алкильных групп [225]. [c.235]

    В противоположность хлористому галлию и бромистому алюминию хлористый алюминий, как было замечено, лишь слегка растворим в хлористом метило и в хлористом этиле данных об образовании комплексов не имеется [61]. Патентная литература содержит многочисленные ссылки на использование растворов хлористого алюмнния в хлористом метиле или хлористом этиле для полимеризации олефинов, нрисоединения хлористого водорода к олефинам и т. д. Видимая растворимость хлористого алюминия в этих случаях зависит либо от наличия примесей, либо является следствием вторичных реакций, включая и частичный распад алкилхлоридов. [c.434]

    Было, например, найдено, что в присутствии хлористого алюминия, приготовленного действием хлористого водорода на алюминий, ряд реакций протекает менее энергично, чем с хлористым алюминием, полученным из. алюминия и хлора. Свежеприготовленный хлористый алюминий действует энергичнее, чем препарированный задолго до применения его в качестве катализатора. [c.146]

    Ионы карбония образуются в реакциях, катализируемых так называемыми кислотными катализаторами, к которым относятся протонные кислоты (например, серная, фосфорная и фтористо-водородная) галогениды типа катализаторов Фриделя-Крафтса (например, хлористый алюминий, хлористый цирконий и фтористый бор) и окиси (нанример, алюмосиликаты). Ионы карбония, образующиеся в реакционных условиях прежде чем превратиться в конечные продукты могут претерпевать одно или несколько изменений в соответствии со следующими правилами  [c.213]

    Органические добавки, подавляющие побочные реакции. Изучалось влияние органических добавок с целью управления побочными реакциями при изомеризации н-пентана в изопентан в присутствии хлористого алюминия-хлористого водорода как катализатора [21, 39]. Наиболее [c.23]

    В литературе описано также нашедшее промышленное применение получение масел путем алкилирования нафталина хлорированным (до 25% хлора) когазином в присутствии алюминия и хлористого алюминия. Продукт реакции нейтрализовался известью, обрабатывался отбеливающими землями и затем подвергался вакуумной фракционировке, в процессе которой разгонялись на газойль, веретенное, турбинное и цилиндровое масла. Свойства этих масел приведены в табл. 153. Масла эти отличаются высокой термоокислительной стабильностью. [c.401]

    Образование олефинов путем отщепления воды. При нагревании спирта с большим количеством крепкой серной кислоты или хлористым цинком, а также при пропускании паров спирта при 350—500 X через фарфоровую трубку с окисью алюминия происходит реакция дегидратации (отнятие воды) и образуются этиленовые углеводороды. Так, например, из этилового спирта получается этилен  [c.142]

    Галоидопроизводные алифатических соединений очень легко конден-сир>тотся с ароматическими соединениями в присутствии хлористого алюминия. Скорость реакции зависит от природы галоида и уменьшается в ряду F> l>Br>J . На скорость реакции влияет также и природа ал- [c.291]

    В связи с легкостью гидролиза хлористого алюминия перед реакцией исходные вещества и аппаратура должны быть тщательно высушены. [c.298]

    Изомеризация положения. В присутствии таких катализаторов, как хлористый алюминий — хлористый водород, фтористый бор — фтористый водород, фосфорная кислота и алюмосиликат, полиалкилбензолы могут подвергаться изомеризации положения. Эта реакция часто сопровождается /п./)анс-алкилированием. [c.104]


    В реакциях изомеризации значение катализа особенно велико, так как с понижением температуры реакции увеличивается равновесное содержание изомеров разветвленного строения. Кроме того, в области низких температур снижается интенсивность нежелательных побочных реакций крекинга или диспропорционирования. Важнейшее требование, предъявляемое к изомеризующим катализаторам, сводится поэтому к достижению приемлемых для промышленного процесса скоростей реакции при минимальной температуре процесса. Логично ожидать, что для образования карбоний-ио-пов и последующей внутримолекулярной перегруппировки углеводородов потребуются сильно кислотные активные центры. Примером сильной кислоты, которая может использоваться как изомеризующий катализатор, является система хлористый алюминий — хлористый водород. [c.192]

    Реакции, протекающие с участием комплексных соединений упомянутого выше характера, были несколько лет назад предметом подробных исследований Коха и Гильферта [26]. Последние нашли, что катализатор изомеризации (хлористый алюминий — хлористый водород) способен присоединять к ненасыщенным продуктам крекинга молекулярный водород, насыщая их таким образом. Это весьма благоприятно сказывается на стойкости самого катализатора, который в присутствии больших количеств олефинов становится неактивным. Комплекс хлористого алюминия и хлористого водорода может служить переносчиком водорода от молекулы парафина к олефину. При этом сам парафиновый углеводород становится все более ненасыщенным и, наконец, так крепко связывает хлористый алюминий, что последний становится неактивным. В присутствии водорода под давлением эта реакция тормозится или вовсе подавляется [27.  [c.522]

    При достаточно жестких условиях найдено [62], что изомеризация -бутана идет и в отсутствии специально добавленных олефинов или алкилгалоидов. Присутствие в продуктах реакции пропана закономерно, ввиду того что хлористый алюминий-хлористый водород вызывают частичное разрушение молекулы бутана при достаточно жестких условиях и что недостаток водорода в продуктах разрушения ведет к образованию ионов карбония, необходимых для инициирования цепи изомеризации. [c.19]

    При применении монометанолята хлористого алюминия побочная реакция идет в незначительной степени [38(1]. При алкилировании бутеном при 55° образуется жидкий продукт, содержащий 60% диметилгексанов (35% 2,4- и 2,5-, 17% 2,3-и 8% 3,4-диметилгексанов) и 9,5% триметилпентанов (6,5% 2,2,4- и 3% 2,3,4-триметилпентанов). При алкилировании же бутеном-2 при 28° получается жидкий продукт, содержащий 65% триметилпентанов (28% 2,2,4-, 22,5% 2,3,4-, 14% 2,3,3- и 0,5% 2,2,3-триметилпентанов) и только 4% диметилгексанов (3,5% 2,4- и 2,5- и [c.323]

    Хотя в классической реакции Фриделя—Крафтса использовался галоидалкил с хлористым алюминием, эта реакция уже давно получила более широкое толкование, позволяющее применять иные источники алкильных групп и другие катализаторы. Вместо галоидных алкилов в современной заводской практике повсюду применяют олефины (см. гл. LVII). Имеются данные, что чистые олефины и чистые галоидные металлы пе вступают в реакцию [114, 251]. В заводской практике в качестве промотора вводят хлористый водород или воду. При этих условиях олефины, по-видимому, превращаются в ионы карбония (LXXI)  [c.429]

    Хлористый алюминий катализирует реакцию фосгена с ароматическими соединениями, однако не наблюдается обмена, так что, очевидно, не происходит ионизации [158]. При ацилировании толуола образуется только -изомер [246]. Отсутствие, о-изомера указывает на большие пространственные затруднения, сильно отличающиеся от наблюдаемых в случае 2,4,6-трибромбензоилхлорида их было бы трудно понять, если бы атакующей группой был свободный ион ацилония НСО" . Наконец, эти [c.456]

    На основании анализа продуктов крекинга парафиновых углеводородов пефти в присутстпии хлористого алюминия химизм реакции может быть представлен в следующем виде. [c.432]

    При получении этилбензола наиболее распространенным катализатором является безводная система хлористый алюминий - хлористый водород. Ввиду экзотермического характера взаимодействия между бензолом и этиленом для ограничения верхнего температурного предела (95°С) используют охлаждение. Подавление реакции образования диэтилбензола достигается повышением соотношения бензол этилен. Его всегда похшерживают выше 1, чаще всего оно равно 5 или выше. Большую часть образующегося диэтилбензола возвращают в реактор /12/. Потребление катализатора составляет 10 кг на 1 т этилбензола. [c.147]

    Однако, как показали исследования С. С. Наметкина и 1Л. Г. Руденко, процесс полимеризации в присутствии хлористого алюминия, аналогично реакциям в присутствии серной кислоты, солровождается образованием насыщенных и ненасыщенных соединений, т. е. также реакциями дегидрогенизации—гидрогенизации по схеме  [c.148]

    Этот цепной механизм легко объясняет значительное различие продуктов, получаемых алкилированием изобутана 1-бутеном и 2-бутеном при применении хлористого алюминия в качестве катализатора, хотя нри сернокислотном и фтористоводородном алкилировании оба эти олефина образуют практически одинаковые продукты. Например, октановые числа бензиновых фракций с концом кипения 125°, получаемых алкилированием пзобутана 1-бутеном И 2-бутеном при 30° в присутствии хлористого алюминия и хлористого водорода, составляют соответственно 74,5 и 83,5 в обоих случаях алкилат содержит только 21—23% октанов [28в]. Если применять модифицированный катализатор на основе хлористого алюминия, а именно монометанолат хлористого алюминия, побочные реакции подавляются, вследствие чего при алкилировании 1-бутеном ири 55° получают жидкий продукт, содержащий 70% октанов октановое число бензиновой фракции с концом кипения 125° в этом случае равно 76 [28в]. Алкилирование 2-бутеном при 28° в присутствии монометано-лата хлористого алюминия дает жидкий продукт, содержащий 69% октанов бензиновая фракция с концом кипения 125° имеет октановое число 94. Основной причиной различия октановых чисел является изомерный состав октановых фракций бензин, полученный алкилированием 1-бутеном, содержит 71% диметилгексанов и 11% триметилиентанов, в то время как бензин, полученный с применением 2-бутена, содержит лишь 4,5% диметилгексанов и 76% триметилиентанов. С другой стороны, продукт, полученный алкилированием пзобутана 1-бутеном в присутствии жидкого фтористого водорода при 19°, аналогичен полученному с применением 2-бутена. При перегонке обоих алкилатов получают бензиновые фракции с концом кипения 150°, имеющие октановые числа соответственно 92,7 и 95,3 [20, 21]. Октановая фракция, полученная с выходом 57% от теоретического при алкилировании 1-бутеном, содержит 18% диметилгексанов и 82% триметилпентанов аналогичная фракция, полученная с выходом 68% при алкилировании 2-бутеном, содержит 9% диметилгексанов и 91% триметилпентанов. Аналогично алкилирование пзобутана в присутствии 97%-ной серной кислоты при 20° дает бензиновую фракцию с концом кипения 185° и октановым числом 92,9 при алкилировании [c.182]

    Очень важно, что в присутствии хлористого алюминия происходят реакции переалкилирования, что повышает выход целевого пролзтс-та  [c.41]


    Процессы конденсации, основанные на применении хлористого алюминия, н промышленности органически.ч полуародуктои п красителей приобрели существенное значение. В настоящее время в присутствии xJюpи тoгo алюминия (по реакции Фриделя— Крафтса) получают в крупных масштабах кетоны и кетокис,/юты, дегидратация которых приводи к образованию производных антра-хинонового ряда. [c.342]

    Если полигялогензамещенное соединение легкодоступно, оно может служить источником соединения с меньшим числом атомов галогена, но с тем же числом атомов углерода, В качестве восстанавливающих агентов, осуществляющих таку(о реакцию, применяют амальгаму алюминия []], хлористый алюминий 12], мышьяковистокислый натрий [3,4], порошок меди в воде [5], меркаптаны [6], метилмагнийбромид в тетрагидрофуране [7], гидрид три-н-бутилоло-ва [8] и молекулярный водород в присутствии платины [9]. Выходы, получаемые при таком восстановлении, часто достаточно высоки. Некоторые трибромметилпроизводные ведут себя как положительно заряженные соединения галогенов и могут восстанавливаться спиртами (пример 6.4), а хлораль вступает в окислительно-восстанови-тельную реакцию с цианид-ионом, образуя метиловый эфир дихлор-уксусной кислоты [10]. [c.465]

    Ацильная группа. Может быть использовано любое производное кислоты, но обычно применяют ангидриды или хлорангидриды. Для получения максимальных выходов, кетонов необходимо брать по крайней мере I экв хлористого алюминия при реакции с ацилгалогенидами или 2 экв при реакции с ангидридами. Аци-лирующий агент является объемным, слабо электрофильным и потому весьма селективным по своей ориентационной способности. Таким образом, предпочтительным направлением замещения является замещение в лй зй-положение, и поэтому циклы, деактивированные в этом положении, как, например, ацетофеноны, производные ароматических кислот, бензонитрилы, нитробензолы, хинолины, пиридины и подобные им соединения, ацилировать не удается. Галогенангидриды кислот склонны к выделению в присутствии хлористого алюминия окиси углерода, если остающаяся часть алкильной группы представляет собой стабильный катион. [c.122]

    Обратимая изомеризация бто/ -бутилбензола в третичный протекает при 350° С и давлении 40 ат на кремнефосфорной кислоте или хлористом цинке, осажденном па окиси алюминия [91 ]. Реакция идет с промежуточным образованием карбоний-ионов по следующей схеме  [c.102]

    Ароматические дисульфиды при разложении просто теряют серу например, фенилдисульфид при температуре около 300° С превращается в фенил-сульфид. В присутствии хлористого алюминия эта реакция гладко протекает при более низких температурах. Никель Ренея в отсутствие водорода катализирует превращение фенилдисульфида в соответствующий сульфид, но в присутствии избытка водорода удаляется вся сера, и получается бензол. В присутствии аминов и других оснований дисульфиды растворяют свободную серу, образуя полисульфиды. Однако большинство реагентов вызывает разрыв связи сера— сера. Восстановлением химическими способами, например действием цинка и кислоты, удается получать меркаптаны с высокими выходами. Метилдисульфид взаимодействует с йодистым метилом, образуя триметилсульфониййодид [c.277]

    Процессы изомеризации с применением системы хлористый алюминий — хлористый водород начали применять в нефтепереработке для получения изобутапа из к-бутана и изопентана из к-пентана с первой половины 40-х годов [56]. При применении хлористого алюминия возникают серьезные трудности, связанные с его летучестью и необходимостью сохранения его в зоне непосредственного протекания реакции. При парофазных процессах хлористый алюминий испаряется из обогреваемой (100—125° С) зоны реакции и переносится в более холодные зоны, где он осаждается в твердом состоянии и может забивать аппаратуру. Растворимость хлористого алюминия в жидких углеводородах невелика, но Возрастает с повышением температуры поэтому при жидкофазпых процессах возникают трудности, связанные с уносом катализатора. [c.192]

    Во второй главе описаиа реакция Гаттермана, позволяющая ввести альдегидную группу в ароматические соедииения при действии па них смеси синильной кислоты и хлористого водорода в присутствии галогенидов металлов (хлористого алюминия, хлористого цинка). И этой главе также приведена модификация этой реакции, гредложенпая Лламсом, с применением цианистого цинка вместо синнльиой кислоты. [c.5]

    Фракцию III можно метилировать до тетраметилбензола нагреванием на кипящей водяной бане со 100 г безводного хлористого алюминия и пропусканием в сд1есь 225 г хлористого метила. Из фильтратов от дурола, содержащих его изомеры, также можно получить значительное количество дурола, если нагревать их на кипящей водяной бане с 50 г хлористого алюминия. Продукт реакции обрабатывают обычным путем, т. е выливают на двойное весовое количество колотого льда, отделяют от водного слоя, фракционируют дважды и вымораживают дурол, как описано. [c.254]


Смотреть страницы где упоминается термин Алюминий хлористый реакции: [c.193]    [c.260]    [c.353]    [c.49]    [c.127]    [c.270]    [c.637]    [c.649]    [c.619]    [c.72]    [c.166]    [c.449]    [c.155]    [c.159]    [c.7]    [c.50]    [c.55]    [c.234]    [c.291]    [c.522]    [c.249]   
Методы элементоорганической химии Бор алюминий галлий индий таллий (1964) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий реакции



© 2025 chem21.info Реклама на сайте