Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан окисления-восстановления

    Из приведенного выше обзора элементов видно, что титан, ванадий, молибден и вольфрам образуют по нескольку степеней окисления. Отсюда следует, что среди аналитических реакций этих элементов большое значение должны иметь реакции окисления-восстановления, тем более, что течение этих реакций обычно сопровождается изменением окраски раствора. Необходимо иметь в виду, однако, что реакции эти протекают нередко довольно медленно. Поэтому, если они сразу не удаются, реагирующей смеси нужно дать достаточное время постоять. [c.205]


    По химическим признакам среди металлов выделяют активные (ЩМ, ЩЗМ, РЗЭ) и инертные, или благородные (ПМ, титан и др.). Важной является классификация по способу получения металлы бывают самородными или входят в состав руд, где они находятся в окисленном состоянии. Восстановление из руд ведут металлотермическим способом, используя активные металлы (натрий, кальций, магний и др.), углерод, водород, приемы порошковой металлургии, электролиз растворов или расплавов и т. д. [c.255]

    Окислительно-восстановительный электрод — это электрод, состоящий из инертного материала (металлические платина, золото, вольфрам, титан, а также графит), погруженного в водный раствор, в котором имеются окисленная и восстановленная формы данного вещества. [c.148]

    Титан можно вводить в электролит в виде различных соединений. Электролиз ведут ниже температуры плавления титана, поэтому он получается в виде небольших кристаллов. Процесс сопровождается образованием на катоде продуктов неполного восстановления, которые могут перемещаться к аноду и окисляться на нем, что снижает выход по току. Уменьшить образование соединений низших степеней окисления можно подбором режима электролиза, состава электролита и отделением анодного пространства пористой диафрагмой [45, 57, 58]. [c.276]

    Титан имеет также соединения в степенях окисления +3, которые образуются при восстановлении соединений титана (IV), например  [c.261]

    В том случае, когда раствор содержит какой-либо окислитель и восстановитель, добавляется ток реакции окисления и восстановления, поэтому эффективность использования тока становится не более 100 % (при добавлении тока реакции восстановления). Возможны случаи, когда эта величина превышает 100 % (при добавлении тока реакции окисления). Следовательно, необходимо, насколько это возможно, удалять из раствора Окислители и восстановители. Растворенный кислород выступает в роли окислителя. Если пленка обладает неэлектронной проводимостью (алюминий, тантал и другие металлы), реакция окисления и восстановления не развивается, поэтому проблемы не возникает. Следует обратить внимание на то обстоятельство, что ионы водорода выступают в качестве окислителя по отношению к неблагородным металлам (железо, хром, титан, цирконий и др.), причем при потенциале, более благородном, чем потенциалы водородного электрода, такая проблема отсутствует. [c.194]

    III) провели сравнительно недавно В. М. Пешкова и 3. А. Галлай титан восстанавливают в кадмиевом редукторе и затем титруют растворами бихромата калия или ванадата аммония при потенциале +0,5 в (Нас. КЭ) по току окисления титана (III) (кривая имеет форму а). Так как титан (III) легко окисляется кислородом воздуха, то все определение (и восстановление титана, и последующее титрование) проводят в присутствии сульфата аммония примерно в 2 н. растворе по серной кислоте. В таких условиях титан (III) связывается в сульфатный комплекс и окисляется медленно. Метод позволяет определять 5—10 мг титана в титруемом объеме. [c.315]

    Медь, титан, ванадий и железо снижают полноту восстановления урана(У1). Это объясняется тем, что ультрафиолетовый свет в присутствии указанных элементов способствует окислению урана(1У) до урана(У1) [61, 77, 375]. Нагревание также ускоряет окисление урана(1У) до урана(У1), поэтому для полного восстановления реакционный сосуд с облучаемым раствором необходимо охлаждать снаружи водопроводной водой. [c.76]

    После растворения оксида железо существует частично или полностью в виде железа (П1). Поскольку для титрования стандартным раствором перманганата калия требуется, чтобы все железо присутствовало в виде железа (П), железо(П1), образовавшееся в результате растворения пробы, должно быть количественно восстановлено. Для этого можно использовать любую из методик, описанных выше для предварительного переведения вещества в соответствующую степень окисления. Обычно для восстановления железа (П1) используют сероводород или диоксид серы. Если раствор прокипятить, то избыток любого газа-восстановителя легко удалится, но следует принять меры предосторожности против повторного окисления л<елеза(П). Можно использовать и редуктор Джонса, но в нем восстанавливаются до более низких степеней окисления и сопутствующие железу элементы в руде, а именно, титан, ванадий, хром, уран, вольфрам, мышьяк и молибден. Поэтому результаты титрования окажутся завышенными. В то же время серебряный редуктор позволяет. проводить преимущественное восстановление железа (П1) в присутствии титана (IV) и хрома (III). [c.324]


    Кривые амперометрического титрования, подобные тем, что показаны на рис. 13-12а, получаются при окислении иодида, ферроцианида и гидрохинона церием (IV), при восстановлении железа (III) титаном (III) и окислении иодида до монохлорида иода бромом в концентрированной хлористоводородной кислоте. [c.472]

    Если раствор протактиния (как радиоактивного индикатора) в соляной кислоте, содержащий лантан, цирконий или торий, восстановить амальгамой цинка, хлористым хромом или хлористым титаном, индикатор увлекается фторидами лантана, циркония или тория. Титрование сульфатом церия показывает, что в восстановленном состоянии протактиний четырехвалентен. Индикатор остается на носителе при промывании не содержащей воздуха водой, но удаляется разбавленной плавиковой кислотой в присутствии воздуха, по-видимому, в состоянии высшего окисления .  [c.146]

    Окислительно-восстановительные индикаторы [1, 3, б, 7J изменяют цвет или интенсивность флуоресценции раствора в результате окисления или восстановления их молекул в зависимости от свойств люминофора флуоресцируют или его окисленная, иди восстановленная форма, илн та и другая. Значение потенциала, при котором происходит переход флуоресценции индикатора, зависит от кислотности среды. Предложены для применения следующие индикаторы этой группы а-нафтофлавон, риванол, родамин 6Ж, родамин С, трипафлавин, флуоресцеин, фосфин. При титровании растворами брома, иода или церия (IV), бромата, гипохлорита, перманганата можно определять железо (II) и олово (II), мышьяк (III),сурьму (III) и титан (III), ванадий (IV) и молибден (IV). [c.285]

    Влияние катализаторов. Прибавление некоторых веществ к электролиту часто приводит к увеличению выхода по току при восстановлении. Такого рода катализаторы относятся в основном к двум типам. К первому типу относятся соли металлов с высоким водородным перенапряжением, например соли цинка, олова или ртути. В процессе электролиза эти металлы отлагаются на катоде, повышая таким образом его перенапряжение. Ко второму типу относятся ионы металлов, способных существовать в двух степенях окисления, например титан, ванадий, хром, железо и церий. Эти вещества иногда условно называются переносчиками водорода. Механизм их действия, повидимому, следующий. Ион-переносчик в более высокой степени валентности, например Т1++ , восстанавливается у катода до более низкой степени, например Т1+++ последний, будучи мощным восстановительным агентом, вступает в реакцию с веществом, находящимся в растворе, окисляясь при этом до первоначального состояния. Получающиеся при этом ионы снова катодно восстанавливаются, и процесс идет непрерывно, причем для этой цели достаточно совсем небольшого количества переносчика. [c.678]

    Рассматривая имеющиеся опытные данные о влиянии ионной силы на скорость реакций и, Ыр и Ри, можно заметить, что это влияние как с качественной, так и с количественной стороны различно для разных реакций. Для большинства рассмотренных реакций обнаружен положительный электролитический эффект. Однако скорость пяти реакций (№ 8, 9, 13, 21 и 22) уменьшается с ростом ц. Скорость трех реакций — восстановления Ри (VI) трехвалентным титаном и Нр (V) иодид-ионами и окисления Ри (III) хлором — не зависит от ионной силы. [c.296]

    Первые более вязки и прочнее пристают к платиновой проволоке, последние же дают более чистые окраски в некоторых случаях, когда перлы буры лишь слабо окрашиваются, фосфорная соль дает отчетливое окрашивание (при титане, молибдене и вольфраме). Окраска не зависит от степени окисления, в которой находится исследуемая соль, но зависит от того, нагревают ли перл в окислительной или восстановительной части пламени бунзеновской горелки, причем при окислении кислородом воздуха или при восстановлении водородом, содержащимся в светильном газе, образуется высший или низший окисел, наиболее устойчивый при данных условиях. Кроме того оттенок цвета меняется с температурой, так как при высокой температуре область поглощения световых лучей перемещается [c.128]

    Восстановление алюминием — процесс более длительный, кроме того, при этом восстанавливаются другие компоненты руды, например четырехвалентный ванадий и четырехвалентный титан, которые затем титруют вместе с двухвалентным железом. Однако при восстановлении алюминием чаще можно получить заниженные результаты из-за окисления железа кислородом воздуха после [c.93]

    Уран (VI) можно титровать по методу окисления-восстановления двумя способами прямое титрование урана (VI) восстановителями и титрование урана (IV). Для прямого титрования нужны сильные восстановители, так как нормальный потенциал системы /ypaH(VI)/ypaH(IV) составляет всего +0,334 В. К таким восстановителям относятся титан(III) [8] и хром(II) [9j, предложенные также для титрования ванадия(V) (см. Ванадий ), и соль Мора в сильной фосфорно-кислой среде, снижающей редокс-потенциал системы ферри-ферро [10]. [c.276]

    Реакции окисления—восстановления титана. Mg, Zn, d, Al восста навливают в кислой среде Ti BjTi (а) окислители окисляют титан (III) в титан (IV) (б)  [c.248]

    Алюмосиликаты, содержащие хром, ванадий, вольфрам, молибден, марганец, никель, кобальт, титан, уран и другие металлы в ионообменном и неионообменном состоянии были применены в целом ряде реакций окисления, восстановления, этерификации, гидратации, дегидратации, гидрирования, полимеризации [2]. [c.208]

    В соответствии с положением в периодической системе основная степень окисления этих элементов +4. Только титан относительно легко проявляет низшие степени окисления ( + 3 — -конфигурация +2 — -конфигурация), причем соединений с двухвалентным титаном известно лишь незначительное количество (опыт 5). Формальные степени окисления —1 и О реализуются лишь в исключительных случаях (табл. В.39). Из соединений циркония низших степеней окисления можно указать только Zr la и Zr h- Первый образуется при восстановлении Zr U цинковой пылью при 3,4—6,0 МПа и температурах 460—500 °С  [c.609]

    В степени окисления ( + 1П) титан образует амфотерные оксид TI2O3 и гидроксид Ti(0H)3 с преобладанием основных свойств. При нагревании оксид титана(III) подвергается дне-мутации до TiO и TiOg. Гидроксид титана (111) под действием кислот-неокислителей переходит в раствор в виде [Ti (Н20)б] . Катион гексаакватитана (111) может быть получен восстановлением титана (IV)  [c.234]

    Кетонокислоты получают взаимодействием глутарового ангидрида или двухосновной жирной кислоты с тиофеном [2, 8, 60, 87, 92]. В качестве катализаторов ацилирования тиофена с успехом применяют хлорное олово, четыреххлористый титан и хлористый алюминий. В отдельных случаях применяли также хлорную ртуть, хлористый цинк, пятиокись фосфора, йод, йодистоводородную кислоту, алюмосиликатные гели и фтористый бор. Ацилтиофены вступают в реакцию Клемменсона (восстановление до алкилтиофенов), реакцию Фицингера с изатиновой кислотой, реакцию Гриньяра, хлорметилирование, реакцию Манниха, окисления гипохлоридом натрия, карбоксиэтилирования и хелатообразования. [c.285]

    В этих условиях осаждаются Ве, В1, Оа, НГ, 1п, ЫЬ, 5Ь (Н1), Та, ТЬ, и и 2г. В присутствии скандня определяется только 80—90% алюминия. Сг (VI) осаждается неполностью в виде оксихинолината до 20 мг Сг (VI) мешает очень мало. Влияние Сг (III) значительно сильнее. Если содержание хрома < 20 мг, его влияние устраняют окислением до Сг(У1). Кроме того, хром можно связать в комплексонат кипячением с комплексоном 111 в течение 5 мин., при этом железо должно быть восстановлено кипячением с сернистой кислотой. Фториды до 1 мг не мешают, большие количества занижают результаты, даже в присутствии большого избытка НдВОз. Ортофосфаты не мешают, если не присутствует одновременно более 100 мг Ре (фосфаты препятствуют полному восстановлению Ре). Ванадий осаждается неполностью. Влияние ванадия меньше при рН<9. Титан полностью осаждается в виде оксихинолината при pH 9 и ниже, при pH >9 осаждение неполное. [c.83]


    В редукторе с амальгамированным цинком восстанавливаются гакже Ре(П1), 8п (IV), Мо (VI), V (V), (V), Ш (VI), ЫЬ (V), Сг (III), Ей (III), Се (IV), 5Ь (V), Т1 (III) и некоторые другие элементы. Поэтому они не должны присутствовать в исходном анализируемом растворе или по окончании восстановления должны быть снова окислены до валентного состояния, которое не мешает титри-иетрическому определению урана. Последний прием оказывается весьма эффективным для таких элементов, как титан (III) и хром (П), которые окисляются до титана (IV) и хрома (III) при продувании восстановленного раствора воздухом, что необходимо про-йзводить для окисления урана (III) до урана (IV). Некоторые из Металлов, восстанавливающихся цинком, как, например, церий, Ванадий и железо, могут присутствовать в исходном растворе и не [c.79]

    Только совсем недавно 3. А. Галлай и Т. Я. Рубинской удалось применить для восстановления перренат-иона очень сильные восстановители-растворы хрома (II) и титана (III). Титруют на фоне 5 М серной кислоты по току окисления восстановителей на платиновом электроде. В предварительном сообщении не указаны потенциалы, при которых рекомендуется проводить это титрование. Метод проверен на анализе двойных сплавов рения с молибденом, вольфрамом, хромом, титаном и на тройном сплаве никель-хром-рений. Если количество хрома и молибдена не превышает количество рения в этих сплавах, то можно определять оба компонента дифференциальным методом. [c.281]

    Титан в указанных комплексах с азотом находится в низшей степени окисления. Было показано, что координация азота и его последующее восстановление происходят только тогда, когда титан(1У) восстанавливается с помощью Mg 4-MgI2 или RMgX до Т1(1П) или соответственно до Т1(П) [39, 58]. Было высказано предположение, что восстановление азота в двухъядерном комплексе происходит вследствие одновременного разрыва двух связей молекулы азота и образования производных гидразина [49]. Ослабление связи N в двухъядерном комплексе создает условия, при которых молекула азота, взаимодействуя с двухэлектронным восстановителем, может принимать еще два электрона от двух частиц катализатора, участвующих в образовании комплекса  [c.251]

    То же можно сказать и в отношении объемных определений. Если объемное определение молибдена основано на восстановлении его цинком и титровании стандартньт[ раствором перманганата, то такие вещества, как нитраты, мышьяк, вольфрам, ниобий, которые не восстанавливаются до определенной степени окисления, должны быть предварительно удалены. Такие элементы, как железо, хром, титан, ванадий, надо или удалить или точно определить, чтобы можно было внести на их присутствие соответствующую поправку. [c.28]

    ВЫСОКОЙ промежуточной валентности, как ванадий и молибден, либо до состояния высшей валентности как титан, с образованием эквивалентного, количества железа (II). Для окисления в большинстве случаев достаточно йятикратного количества железа Если окраска железа (III) вызывает затруднения при последующем титровании, то прибавляют к раствору 2—5 мл фосфорной кислоты, за исключением тех случаев, когда в растворе присутствует титан, который при этом образует малорастворимый фосфат. Некоторые восстановленные соединения, как, например, рения, настолько неустойчивы, что из всех пропускаемых через редуктор растворов необходимо предварительно полностью удалить воздух продолжительным кипячением. Охлаждать эти растворы следует в атмосфере, свободной от кислорода, как, например, в атмосфере очищенного азота или двуокиси углерода. [c.138]

    Общая химия титана изучена довольно подробно, однако кинетические эффекты чрезвычайно затрудняют получение воспроизводимых результатов, и титан является одним из наиболее многообещаюших элементов для дальнейших исследований. Руды титана встречаются в изобилии (см. табл. 37.1), а сам металл обладает превосходным сочетанием низкой плотности и высокой стойкости к окислению (благодаря тому, что его поверхность покрыта пленкой очень инертной двуокиси титана ТЮг). Однако в настоящее время как восстановление металла из его окисных руд, так и придание ему необходимой формы обходятся дорого. [c.332]

    Метод с применением N-бeнзoил-N-фeнилгидpoк илaминa (БФГА) [2, 3]. К 25 лы анализируемого раствора добавляют по каплям 0,1 н. раствор перманганата калия до бледно-розового окрашивания (для окисления ванадия), подкисляют раствор так, чтобы он стал 5—9 н. по соляной кислоте, и экстрагируют ванадий 0,5%-ным раствором БФГА в хлороформе. После интенсивного встряхивания делительной воронки в течение 20—30 сек отделяют фиолетовый экстракт, фильтруют его через комочек ваты и измеряют оптическую плотность при К = -530 нм (е == 5100). Определению мешают в основном титан, цирконий, олово, гафний, большие количества молибдена. Так как БФГА чувствителен к избытку окислителей, особенно Сг (VI), последний должен быть восстановлен до трехвалентного состояния. Мешающее действие многих элементов можно устранить добавлением фосфорной кислоты и фторида натрия. [c.343]

    Электрическая печь составляет приобретение нового времени, дающее возможность получить. кар до 3500 , какого не дают не только обыкновенные печи, но и пламя гремучего газа, где достигается жар не выше 2000°. Состоит электрическая печь из двух кусков известняка, положенных друг ва друга плоскою поверхностью. В нижнем делается углубление для помещения вещества между двумя толстыми электродами из плотного угля. Пропуская ток в 70 вольт и 450 ампер, легко достигают температуры в 3000°. При жаре в 2500° (100 ампер, 40 вольт) не только все металлы, но известь и магнезия (помещенные в пространство между угольными электродами, т.-е. в вольтову дугу) размягчаются и остывая кристаллизуются. При 3000° известь очень жиака, улетучивается и дает уже отчасти металлический кальций и углеродистое соединение, долго остающееся жидким. Окись урана тогда восстановляется в закись и металл циркон и горный хрусталь плавятся и отчасти улетучиваются, равно и глинозем платина, золото и даже уголь при подобной температуре явно улетучиваются большинство металлов дают тогда соединения с углеродом. Чтобы показать влияние различных температур, получаемых в электрической печи, Муассан приводит следующий поучительный пример. Ток в 100 ампер и 50 вольт ведет к восстановлению титанового ангидрида в низшую синюю степень окисления. При 300 амперах и 70 вольтах получается сплавленный желтый азотистый титан, а при [c.551]

    Pb ", Мо Сг V , Ti ", Г, S N, NO2, ЗаОз иВг. а также ор-ганическне соединения. Влияние поглощения органических веществ можно учесть, измеряя поглощение растворов при 275 нм. Если к раствору, содержащему нитраты и хлориды, добавить H2SO4, то максимум поглощения сдвигается до 230 нм. В этой области мешающее влияние посторонних ионов выражено слабее. Применение сернокислых растворов предложено в работе [67]. Метод использован для анализа воды [68] и других объектов [69]. Измерение поглощения в УФ-области позволяет определять нитрит и нитрат при совместном присутствии [70], поскольку оба иона поглощают в области 302 нм, а нитрит — в области 355 нм. При использовании кюветы с толщиной слоя 1 см предел обнаружения нитрита равен 0,02 мг/мл, а нитрата 0,09 мг/мл. Определению мешает ряд ионов [70]. Описан косвенный метод определения нитратов, основанный на их восстановлении титаном (III) до аммиака и измерении поглощения аммиака в газовой фазе при 201 нм. Ионы кобальта, меди, железа и цинка подавляют сигнал, хотя не мешают определению аммония в аналогичном методе. Предполагается, что этот эффект связан с частичным окислением титана(III) или образованием неустойчивых промежуточных комплексов этих ионов, которые разлагаются с выделением не аммиака, а других соединений азота. [c.128]

    Закись ТЮ, окись TI2O3 и промежуточные фазы можно получить, действуя на ТЮг восстановителями титаном, магнием, цинком, углеродом и водородом. Повыщение температуры способствует получению соединений с меньшим содержанием кислорода. Так, при восстановлении титаном в интервале 900—1000° образуется преимущественно TI2O3, а при 1400—1500° — ТЮ. Все окислы титана имеют высокую температуру плавления (табл. 54). Закись, окись и промежуточные фазы сравнительно устойчивы на воздухе, но в интервале 350— 800° легко окисляются, превращаясь в двуокись титана. Устойчивость к окислению повышается с увеличением содержания кислорода в окислах. Аналогичная закономерность обнаруживается и при действии кислот на окислы титана. Так, ТЮ хорошо растворяется в разбавленных кислотах, вытесняя водород  [c.216]


Смотреть страницы где упоминается термин Титан окисления-восстановления: [c.669]    [c.656]    [c.104]    [c.137]    [c.244]    [c.180]    [c.172]    [c.175]    [c.277]    [c.530]    [c.651]    [c.70]    [c.234]    [c.344]    [c.92]   
Методы элементоорганической химии Кн 2 (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

окисление—восстановление



© 2024 chem21.info Реклама на сайте