Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутадиен, полимеризация хлористый

    Этилен СН2=СН2, пропилен СНд—СН=СН2, бутилен СНз— —СНз—СН=СН2, бутадиен (дивинил) СН2=СН—СН=СН2, будучи очень реакционноспособными соединениями, играют важную роль в промышленности органического синтеза. Из многочисленных реакций, в которые вступают олефины, наибольшее практическое значение имеют процессы полимеризации (полиэтилен, полипропи-,лен, полиизобутилен и др.), гидратации (спирты), хлорирования (дихлорэтан, хлористый аллил и т. п.), окисления (окись этилена), оксосинтеза и некоторые другие реакции. Широкое распространение получили процессы гидратации олефиновых углеводородов. Таким способом получаются этиловый, изопропиловый и другие спирты. В настоящее время этиловый спирт по объему производства занимает первое место среди всех других органических продуктов. С каждым годом спирт, получаемый из пищевого сырья, все более и более заменяется синтетическим, гидролизным и сульфитным (см. стр. 230)  [c.190]


    Такой процесс называется теломеризацией. Полимеризация проходит по той же самой схеме, однако число присоединяющихся молекул резко увеличивается (до многих тысяч). Эта реакция — одна из самых важных в производстве пластических масс. Наиболее часто используются следующие мономеры этилен СН2=СНа, пропилен СНа=СН—СНд, хлористый винил СН2=СН—С1, винил ацетат СНа=СН—ОСОСН,, тетрафторэтилен Ср2=СРз, акрилонитрил СН2=СН—СМ, метилакрилат СН2=СН- ООСНз, метил-метакрилат СН2=С(СНз)СООСНз, стирол СН2=СН—С Нь, бутадиен СНз=СН—СН=СН2, хлорбутадиен (хлоропрен) СН2=С(С1)—СН=СНа и др. [c.433]

    Многие мономеры, например хлористый винил и бутадиен, при обычных давлениях являются газами, поэтому полимеризацию их необходимо проводить под давлением. Имеются обширные описания промышленных и лабораторных методов эмульсионной и пенной полимеризации при атмосферном и повышенных давлениях [35, 127]. Кроме периодических процессов, некоторый успех достигнут и в процессах непрерывной полимеризации, осуществляемых в проточных системах и в батарее последовательно расположенных реакторов с мешалками [82]. [c.120]

    Хлоропрен является мономером для производства неопрена — специального маслобензостойкого каучука. Хлоропрен получают присоединением хлористого водорода к винилацетилену, который в свою очередь приготовляют димеризацией ацетилена. Полимеризация изопрена, полученного аналогично бутадиену-1,3 из s-фрак-ции после крекинга нефти, приводит к полиизопрену — каучуку, который соответствует природному каучуку. [c.233]

    Исходным сырьем для получения различных типов синтетического каучука могут служить бутадиен, изопрен, диметилбутадиен, изобутилен, хлоропрен, стирол и нитрил акриловой кислоты. Главные типы синтетического каучука буна — полимер бутадиена, буна 8 — кополимер бутадиена и стирола, пербунан — кополимер бутадиена и нитрила акриловой кислоты и неопрен — полимер хлоропрена с промежуточными типами. Другие эластичные продукты должны рассматриваться, однако, не как синтетический каучук, а скорее как заменители каучука. Сюда относятся полимер хлористого винила, тиокол,, получаемый путем обработки дихлорэтана полисульфидом натрия,, и разнообразные полибутилены, называемые вистанекс . В настоящее время эмульсионный метод полимеризации диенов является основным. Прежде применялась объемная полимеризация бутадиена при помощи металлического натрия, откуда возникло название буна . Этот процесс протекает медленно и не ведет к образованию высших полимеров он теперь вообще оставлен и заменен эмульсионным процессом. Ингредиенты эмульгируются с водой в таких условиях температуры и давления, при которых они превращаются в синтетический каучук, похожий на натуральный латекс каучукового дерева. Процесс эмульсионной полимеризации протекает очень быстро и дает продукт с лучшими свойствами. Получающийся продукт имеет ненасыщенный характер, его мол. вес достигает 150 000 . Совместная полимеризация бутадиена со стиролом или нитрилом акриловой кислоты сообщает синтетическому каучуку теплостойкость, повышенную стойкость к износу, улучшенные электрические свойства и меньшую растворимость в углеводородах. В химическом отношении эти кополимеры могут приближаться к синтетическим смолам это, например, зависит от относительных количеств стирола и бутадиена в их совместном полимере вообще полимеризацией указанных веществ можно приготовить продукты типа смол. [c.719]

    Аносов и Коротков исследовали скорость сополимеризации и молекулярные веса сополимеров изобутилена с различными диенами (бутадиеном, изопреном, диметил бутадиеном, хлоропреном, фторопреном), полученных под действием фтористого бора в жидком этилене и его смесях с хлористым этилом. Скорость полимеризации [c.254]


    Продукт эмульсионной полимеризации. хлористого винила. Обрабатываемость его в значительной степени определяется гранулометрическим составом выпускаемого порошка. При температурах выше 140° С отщепляется хлористый водород с образованием двойных связей в главной цепи. Наиболее распространены резины на основе смесей поливинилхлорида с бутадиен-нитрильными каучуками. С неполярными каучуками ПВХ практически не совмещается. Смешение ПВХ с бутадиен-нитрильными каучуками осуществляется обычно одним из следующих способов. [c.396]

    Изопрен (2-метил-1,3-бутадиен) в последнее время вновь привлек к себе внимание благодаря тому, что на его основе в присутствии 0,1% лития при 40—50° или мюльхеймского катализатора полимеризации (комбинация три-алкилалюминия и хлористого титана) можно получить синтетический каучук, вполне идентичный натуральному и благодаря чистоте даже превосходящий его в некоторых свойствах. В присутствии лития происходит 1,4-полимеризация с предпочтительной i u -копфигурацией двойной связи. Полиизоирено-вый каучук, называемый в США корал-каучуком или америполом SN, не получил еще широкого промышленного значения из-за отсутствия дешевого способа получения изопрена. [c.91]

    Мономеры, практически нерастворимые в воде (бутадиен, изопрен, стирол, хлористый винил, хлористый винилиден и др.). Независимо от природы применяемого инициатора полимеризация начинается в мицеллах эмульгатора и продолжается в ПМЧ, образующихся из мицелл. [c.11]

    Добавление небольших количеств винилацетата к стиролу незначительно влияет на скорость полимеризации стирола, так как в этой области составов протекает исключительно реакция (IV). При увеличении содержания винилацетата в смеси скорость совместной полимеризации снижается вследствие разбавления стирола инертным мономером — винилацетатом. Аналогичный характер имеет кривая скорости совместной полимеризации для системы хлористый винил — бутадиен (см. рис. 40, стр. 145). [c.208]

    Моновинилацетилен может вступать в очень многие интересные реакции. Подобно ацетилену, он присоединяет воду в присутствии Hg lj с образованием метилвинилкетона. Наибольшее значение имеет реакция присоединения хлористого водорода в присутствии катализатора (солянокислый раствор u l) с образованием хлоропрена, или хлорбутадиена, СН2=СН— I=СН2, впервые полученного американским исследователем Карозерсом. При этом побочно образуются продукт присоединения воды—метилвинилкетон и продукт присоединения 2 молей НС1—1,3-дихлорбутилен-2 l H-j—СН= СС1—СНд (по-видимому, образующийся в результате 1,4-присоединения НС1 к хлоропрену). Возможны и другие интересные реакции 1,4-присоединения к хлоропрену (реакция Дильса—Альдера). Хлоро-прен (т. кип. 59,2°) значительно более склонен к полимеризации, чем бутадиен. Для инициирования полимеризации достаточно нагревание или присутствие следов металлических солей или кислорода. Полимеризацию предотвращают непрерывным введением в перегонную колонну небольших количеств ингибитора полимеризации, например тиодифениламина  [c.211]

    Изопрен полимеризуется в присутствии катионных катализаторов легче, чем бутадиен, однако в поведении обоих мономеров наблюдается много общего. Так, чистый изопрен под действием хлористого алюминия полимеризуется с трудом [9], тогда как в хлорированных растворителях полимеризация происходит быстро. Подобным же образом с хлорным оловом в качестве катализатора чистый изопрен полимеризуется только при температурах выше 0°, в то время как в хлористом этиле быстрая полимеризация происходит при —80° [10]. В отличие от этого бутадиен в хлористом этиле может быть заполимеризован с этим катализатором только при значительно более высоких температурах (около 20°) [11]. Активность хлористого алюминия сильно возрастает, если он присутствует в виде растворимого комплекса. В качестве комплексообразующих реагентов использовались пентен-2, триметилэтилен, нитробензол и этилацетат [12] эти соединения вызывают увеличение концентрации инициатора и могут действовать как сокатализаторы. Считают, что первый из них участвует в полимеризации, увеличивая количество действующего катализатора, что приводит к увеличению скорости полимеризации и уменьшению молекулярного веса. Однако нет веского доказательства того, что олефин не сополимеризуется с изопреном, хотя он определенно сополимеризуется с пропиленом [13] и, вероятно, с триметилэтиленом [14] влияние этих соединений следовало бы исследовать заново. Было найдено, что алкилалюмннийгалогеннды полимеризуют изопрен [15] (а также бутадиен и диметилбутадиен) только в присутствии хлористого водорода или воды в качестве сокатализаторов. Действие алкил-алюмннийгалогенидов, по-видимому, в качестве катионных катализаторов представляет интерес, так как они могут также действовать как анионные инициаторы путем реакции по связи алюминий — углерод (см. гл. 3, разд. VI). [c.301]

    Скорость раздельной полимеризации этих мономеров, как видно на рис. 4, значительно выше скоростей их совместной полимеризации. Бутадиен в этом случае является типичным ингибитором цепного процесса. Это происходит потому, что активный хлорвиниловый радикал реагирует с высокоактивной молекулой бутадиена с большей скоростью, чем с малоактивной молекулой хлористого винила. Несмотря на [c.348]

    Поскольку все мономеры можно представить себе как производные этилена СН2=СНз, то сопоставление структуры мономеров с их активностью показывает, что наименьшей активностью обладают мономеры, у которых нет сопряжения со связью С=С этилена. К таким производным этилена относятся винилацетат, хлористый аллил, аллилацетат, винилэтиловый эфир [38]. Наиболее активные мономеры те, у которых имеется сопряжение со связью С = С этилена. К ним относятся бутадиен, стирол, акрилаты и др. Сопоставление структуры мономеров с их активностью позволяет сделать заключение, что наличие сопряжения у мономера обусловливает не только его стабильность, но и активность (в отношении радикалов). Это кажущееся на первый взгляд противоречие может быть легко объяснено, если исходить из представлений о переходном состоянии системы или об активном комплексе [79]. С этой точки зрения активирование мономера вследствие сопряжения обусловлено тем, что взаимодействие такого мономера А с радикалом К — приводит к более стабильному (за счет сопряжения) и, следовательно, энергетически более выгодному, активному комплексу К — А, а затем к радикалу К — А —. Взаимодействие же радикала И — с неактивным мономером В (отсутствие или незначительная степень сопряжения) приводит по этой причине к менее стабильному и, следовательно, энергетически менее выгодному, активному комплексу К — В, а затем к менее стабильному (следовательно, более активному) радикалу В —В—. Поэтому при совместной полимеризации, например, стирола А и винилацетата В оба типа радикалов А— я В— предпочитают взаимодействовать со стиролом А, так как реакция в направлении образования стабильного активного комплекса А — А) или В —. А) энергетически более выгодна, чем образование нестабильного комплекса А — В) или менее стабильного комплекса В -В). [c.284]

    Бутадиен как мономер более активен, чем хлористый винил, и значительно монее активен как радикал. Раздельная нолимеризация хлористого винила, )1есмотря на малую активность его как мономера, ока-зу.шается достаточно большой вследствие высокой активности его радикала. Выше было показано, что определяющим фактором в актах роста является активность радикала. Полимеризация бутадиена протекает со т оростью, меньшой скорости полимеризации хлористого винила, в [c.347]


    Винилацетилен (бутен-1-ин-З) представляет собой газообразный углеводород (т. кип. 5°С), получаемый димеризацией ацетилена. Присоединяя хлористый водород, он превращается в хлоропрен(2-хлорбу-тадпен-1,3), полимеризация которого позволяет получать маслостойкие каучуки. При гидратации винилацетилена получают также важное соединение — метилвинилкетон (бутен-1-он-З), частичное гидрирование ведет к бутадиену-1,3 [c.256]

    Этилен СНа = СН2, пропилеи СНз—СН = СНг, бутилен СНз—СНг—СН = СНг, бутадиен (дивинил) СНг = СН—СН = СН2, будучи очень реакционноспособными соединениями, играют важную роль в промышленности органического синтеза. Из многочисленных реакций, в которые вступают олефины, наибольшее практическое значение имеют процессы полимеризации (полиэтилен, полипропилен, полиизобутилен и др.), гидратации (спирты), хлорирования (дихлорэтан, хлористый аллил и т. п.), окисления (окись этилена), оксосинтеза и некоторые другие реакции. Широкое распространение получили процессы гидратации олефиновых углеводородов. Таким способом получаются этиловый, изопропиловый и другие спирты. Этиловый спирт по объему производства занимает первое место среди всех других органических продуктов. С каждым годом спирт, получаемый из пишевого сырья, все более и более заменяется синтетическим, гидролизным и сульфитным (см. с. 205) синтетический спирт из этилена в несколько раз дешевле пишевого и требует меньших затрат труда. Синтетический спирт широко применяется в различных отраслях промышленности для получения синтетического каучука, целлулоида, ацеталь-дегида, уксусной кислоты, искусственного шелка, лекарственных соединений, душистых веществ, бездымного пороха, бутадиена, инсектицидов, в качестве растворителя и т. п. [c.169]

    Осагкденные твердые катализаторы. Осажденные катализаторы можно приготовлять взаимодействием двух жидких материалов или жидкости с твердым веществом. Одними из первых катализаторов этого типа были катализаторы алфин [61], состоящие из хлористого натрия, изопропоксида натрия и аллил--натрия. В присутствии катализатора алфин бутадиен нолимеризуется, образуя твердый чрезвычайно высокомолекулярный полимер с преобладанием 7 г/)(1нс-1,4-строен я, в то время как при П0лимеризац и металлическим натрием преобладает 1,2-конфигурация. Полимеризация ст1 рола на катализаторе алфин ведет к образованию стереорегулярного полимера [98]. Согласно патентному описанию [12] катализаторы алфин полимеризуют этилен в жидкой фазе при температуре от —80 до -)-9° I давлении около 10 ат с образованием высокомолекулярных полиэтиленов. [c.287]

    По-пидимому, каталитическая активность производных металлов VIII группы в процессе полимеризации обусловлена их способностью к образованию с ненасыщенными соединениями комплексов, которые устойчивы по отношению к веществам, содержащим активный водород (HgO, ROH). Такие комплексы известны, например, для различных углеводородов диенового ряда. Так, бутадиен дает с хлористым палладием в водной среде комплекс, детальное исследование которого приводит к структуре [59] [c.433]

    Образование кристаллических полимеров, по наблюдениям Брауна и Уайта [209—211], может происходить в результате радикальной нолимеризации бутадиена, акрилонитрила, хлористого винила, випилиденхлорида, циклогексадиена и др. (всего 175 мономеров) под действием электронного пучка или --лучей. Основным условием успеха является применение клат-ратных соединений (соединений включения) указанных мономеров с мо-чевршой или тиомочевиной. После завершения полимеризации мочевину удаляют. ]Молекулы мономеров находятся в определенном положении относительно друг друга, и это приводит к образованию стереорегулярных полимеров. Бутадиен, 2,3-диметилбутадиеи, 2,3-дихлорбутадиен и 1,3-цикло- [c.55]

    Bahr исследовал полимеризацию ацетилена при умеренных температурах в присутствии различных катализаторов, В случае сернистого железа при 300° образуетоя коричневаточерная смола, при 430° происходит выделение углерода. С 50% никеля и 50% олова получается бесцветный прозрачный конденсат, который позднее приобретает зеленую или коричневую окраску углерод выделяется приблизительно при 430°. Применяя железные стружки, покрытые оловом, при 250° удалось получить немного жидкости, но с хлористым оловом и пемзой реакция не идет даже при 500°. В присутствии хлористого цинка при 420—430° Лозовому удалось получить газообразные продукты, состоящие из 32% ацетилена, 2% изоолефинов, 10% нормальных олефинов, 12% водорода и 41% насыщенных парафиновых углеводородов. Среди ненасыщенных углеводородов идентифицированы этилен, пропилен, метилацетилен, а.длен и бутадиен. В жидких продуктах было немного олефинов, бензола, толуола и нафталина, но не было парафинов или нафтенов. [c.730]

    Еще одна группа явлений, которая, казалось, может влиять на реакцию роста цепи в виниловой полимеризации, была открыта Мортоном и сотрудниками при изучении действия некоторых комплексных алфиновых катализаторов на бутадиен и изопрен. Изучавшиеся алфиновые катализаторы получаются при взаимодействии алкоголята щелочного металла, например изопропилата натрия, с галоидоолефином, таким, как хлористый аллил. Продукт такой реакции, представляющий тонкую взвесь МаС1, на которой адсорбированы (СНз)аСНОКа и СН2=СНСН2№, полимеризует бутадиен не только с удивительно высокой скоростью, но и с образованием преимущественно ти/ акс - , 4-соединений без какого-либо образования гелеобразных побочных продуктов. Здесь снова трудно уяснить специфическое действие каталитической системы, не допустив наличия влияния катализатора или окружающей среды на каждый индивидуальный акт роста цепи. [c.13]

    Использование свободных металлов в качестве восстановительных агентов для получения соединений титана и циркония рекомендуют при приготовлении ряда каталитических систем, причем компоненты нагревают при повышенных температурах (найример, 200—300°) с целью получения активных продуктов, т. е. продуктов, способных, по всей вероятности, образовывать комплексы с олефинами и инициировать полимеризацию при обычной температуре. Так, галогениды или алкоголяты титана и циркония нагревают с металлическими натрием, алюминием и даже титаном [215] и получают катализаторы для полимеризации этилена. При нагревании металлического титана с хлористым алюминием также образуется эффективный катализатор. Добавление кислорода или органических и неорганических перекисей дает возможность получить активный катализатор из титана и галогенида алюминия в более мягких условиях [238]. Кроме этилена в присутствии каталитической системы, состоящей из галогенидов алюминия и титана, иолимеризуются также пропилен, бутадиен и изопрен [239]. [c.114]

    Диэтил-, дипропил-, дибутил- или дифенилртуть совместно с солями элементов переходной группы, например хлористым кобальтом, хлористым никелем или треххлористым титаном, при полимеризации диенов при низком давлении способствуют образованию с высокими скоростями превращения полимеров 1,4-структуры, практически свободных от катализатора. Полимеризация ускоряется при облучении ртутной дуговой лампой. Наибольшие скорости конверсии достигаются в случае низших сопряженных диенов, таких как бутадиен и изопрен с высшими гомологами скорость ниже, реакция обычно проводится в несколько стадий в инертной углеводородной суспензии при 0—50° С и давлении выше 35 ат. В сочетании с другими сокатализаторами алкильные соединения ртути полимеризуют олефиныз , виниловые углеводороды , хлористый винил 2 , а также сополимеризуют этилен и а-олефины [c.61]

    Фурановое кольцо, по-видимому, дезактивирует винильную группу. Например, скорость сополимеризации 2-винилфурана с бутадиеном меньше, чем скорость сополимеризации стирола с бутадиеном 2-Винилфуран также менее активен, чем стирол, по отношению к радикалам хлористого винилидена. Каменар с сотр. показали, что скорость сополимеризации в системе 2-винилфуран — хлористый винилиден меньше, чем скорость полимеризации каждого из мономеров. Скорость уменьшается по мере увеличения содержания хлористого винилидена в мономерной смеси. Клиффорд в результате эмульсионной сополимеризации получил сополимеры 2-ви-нилфурана с акрилатами и метакрилатами метакрилонитрилом и хлористым винилиденом Ингибирующее действие фурановых аналогов нитрила коричной кислоты на полимеризацию стирола уже отмечалось выше. [c.340]

    Применение комплексных галоидалюминийорганических соединений в электрофильном катализе. В большинстве промышленных электрофильных процессов (синтез полиизобутилена, бутил-каучука, алкилирование бензола этиленом и пропиленом) в качестве катализатора используется хлористый алюминий [1—5, 8—10]. Несмотря на универсальность и выдающиеся каталитические свойства, его применение не решает ряда актуальных задач электрофильного синтеза. К их числу относится получение полимеров изобутилена из промышленной фракции углеводородов С4 . Фракция С4 служит основной сырьевой базой изобутилеиа и кроме последнего содержит изомеры бутана и бутенов, бутадиен, небольшие количества Сг-, Сз- и Сб-углеводородов, соотношение между которыми меняется в зависимости от условий получения фракции [2]. На полимеризацию изобутилеиа (содержание во фракции 10—50%) другие компоненты фракции, например, бутилепы, оказывают заметное ингибирующее действие [9, 10, 59]. Особенно сильно оно выражено у бутадиена, соединений серы, аммиака и др., почему целесообразно их удаление из фракции 10, 59]. Полимеризация изобутилеиа из фракции С4 приводит к получению низкомолекулярных полиизобути-ленов или продуктов смешанной полимеризации ненасыщенных углеводородов 160—62]. Используемый катализатор (А1С1з в хлорэтиле или толуоле) отличает высокая чувствительность к составу сырья, затрудняющая регулирование молекулярной массы продукта остающаяся после неполного извлечения изобутилена фракция сжигается, вызывая загрязнение атмосферы [59]. [c.11]

    Полимеризацию осуществляют эмульсионным методом при температуре от 5 до 50°С. Вначале бутадиен и стирол смешивают с водой и эмульгатором (канифольное мыло и др.) и проводят предварительное эмульгирование. Эмульсия вместе с раствором инициатора (гидроперекись изопропилбензола) проходит последовательно через батарею полимеризаторов, состоящую из 12 аппаратов. Полимеризатор— стальной аппарат емкостью 12—20 м с мешалками, футерованный изнутри. За время прохождения эмульсией батареи полимеризаторов примерно 60% исходных мономеров превращается в полимеры. Таким образом получают латекс, из которого отделяют непрореагировавшие мономеры и другие примеси. Затем к латексу добавляют коагулянты (поваренную соль Na l или хлористый кальций СаСЬ, серную кислоту H2SO4 или уксусную кислоту СН3СООН), в присутствии которых каучук свертывается — коагулирует. Его отделяют из раствора, промывают, сушат, формуют в виде лент и свертывают в рулоны. Чтобы каучук не склеивался в рулоне, ленты каучука припудривают тальком. [c.254]

    Известное внимание привлекли сополимеры бутадиена и хлористого винилидена с третьим мономером. Например, при полимеризации трехкомпонентной смеси, содержащей бутадиен, хлористый винилиден и нитрил акриловой кислоты в весовых соотношениях 30 30 40, получается сополимер, превосходящий бутадиен-стирольный каучук по физико-механическим свойствам и по устойчивости к действию растворителей. [c.71]

    Бутадиенстирольный каучук (СКС) получают совместной полимеризацией (сополимеризацией) бутадиена и стирола эмульсионным методом при температуре от 5 до 50°. Вначале бутадиен и стирол смешивают с водой и эмульгатором (канифольное масло и др.) и производят предварительное эмульгирование. Полученная эмульсия вместе с раствором инициатора (гидроперекись изопропилбензола) проходит последовательно через батарею полимеризаторов, состоящую из 12 аппаратов. Полимеризатор представляет собой аппарат с мешалкой емкостью 12—20 м , изготовленный из стали и внутри футерованный кислотоупорным материалом. За время прохождения эмульсии батареи полимеризаторов примерно 60% исходных мономеров превращается в полимеры. Из полученного латекса отделяют непрореагировавшие мономеры и другие примеси. Затем к латексу добавляют коагулянты (поваренная соль Na l или хлористый кальций СаСЬ, серная кислота H2SO4 или уксусная кислота СН3СООН), в присутствии которых распределенный в латексе в виде мельчайших частичек каучук свертывается — коагулируется. Каучук отделяют от раствора, промывают, сушат, формуют в виде лент и свертывают в рулоны. Чтобы каучук не склеивался в рулоне, ленты каучука припудривают тальком. При получении бутадиенстирольного каучука исходные мономеры чаще всего берут в следующем количестве 70% (весовых) бутадиена, 30% стирола. Такой каучук сокращенно называют СКС-30. При увеличении стирола в исходной смеси мономеров (свыше 30%) каучук и получаемая на его основе резина становятся менее эластичными. Для повышения прочности каучука, мягкости и пластичности резины, получаемой на его основе, к латексу дивинил стирольного каучука добавляют в виде эмульсии минеральное масло. Маслонаполненный дивинилстирольный каучук получил название СКС-ЗОАМ. [c.267]

    Мортон [40] в 1947 г. разработал катализатор, состоящий из аллилнатрия и изопропилата натрия эта каталитическая система известна под названием алфин-ного катализатора и представляет собой единственный в своем роде катализатор полимеризации таких диенов, как бутадиен или изопрен. Эти катализаторы действуют, по-видимому, по анионному типу инициирования, хотя позднее Мортон утверждал, что инициирование происходит по свободно-радикальному механизму. Этот вопрос будет рассмотрен ниже при обсуждении полимеризации диенов. Для создания наилучших условий действия алфинного катализатора необходимо, чтобы каталитическая система состояла из строго эквивалентных количеств аллилнатрия и изопропилата натрия. Кроме того, в ней должно присутствовать некоторое количество хлористого натрия. Эта каталитическая система очень сложна возможно, что реакция полимеризации протекает на поверхности кристаллов катализатора. С этой точки зрения алфинный катализатор аналогичен новым катализаторам циглеровского типа. [c.84]

    СТЬЮ в воде (стирол, хлористый винил, хлористьш винилиден, бутадиен, изопрен), независимо от природы инициатора полимеризуются в мицеллах мыл и затем в полимерно-мономерных частицах. При полимеризации под влиянием перекиси бензоила в растворах мыла скорость процесса значительно выше по сравнению со скоростью полимеризации в тех же условиях в растворе гептана. Скорость реакции обрыва цепей путем вза11модействия двух макрорадикалов в эмульсиях резко уменьшается по сравнению со скоростью этой реакции в воде и в органических растворителях. Если полимер растворим в мономере, то при постоянной концентрации последнего в эмульсии скорость полимеризации постоянна. С. С. Медведевым и сотр. [148] была подробно рассмотрена количественная сторона кинетики и механизм латексной полимеризации. [c.237]


Смотреть страницы где упоминается термин Бутадиен, полимеризация хлористый: [c.348]    [c.262]    [c.16]    [c.20]    [c.701]    [c.265]    [c.220]    [c.262]    [c.220]    [c.265]    [c.540]    [c.618]    [c.85]    [c.79]   
Методы элементоорганической химии Цинк Кадмий (1964) -- [ c.156 ]




ПОИСК





Смотрите так же термины и статьи:

Бутадиен полимеризация



© 2024 chem21.info Реклама на сайте