Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлоорганические соединения германия

    Соли и металлоорганические соединения германия, олова, свинца катализируют разнообразные ионные процессы. [c.343]

    Монография посвящена методам синтеза и реакциям металлоорганических соединений германия, олова и свинца, имеющим большое научное и практическое значение и интенсивно разрабатываемым в Последние годы. Обобщен обширный материал, охватывающий с максимально возможной полнотой многочисленные работы зарубежных и отечественных исследователей, в том числе работы авторов монографии. Наряду с ранее известными рассматриваются новые классы германий-,олово- и свинцовоорганических соединений — органические гидриды этих металлов и соединения, содержащие два и более атомов металла в молекуле. Описываются физнко -химические свойства и методы анализа указанных типов металлоорганических соединений, рассматриваются основные области их практического использования. [c.4]


    Настоящая книга из серии монографий Методы элементоорганической химии посвящена металлоорганическим соединениям германия, олова и свинца. [c.5]

    Германий-, олово- и свинцовоорганические соединения могут быть получены при действии алифатических диазосоединений на галоидные соли этих металлов, а также действием на органические гидриды германия и олова производных диазоуксусного эфира. Использование солей диазония также позволяет синтезировать металлоорганические соединения германия, лова и свинца. [c.7]

    По своим химическим свойствам металлоорганические соединения германия, олова и свинца имеют много общего, хотя есть и существенные различия. Прежде всего необходимо отметить, что увеличение межатомных расстояний и связанное с этим ослабление внутримолекулярных связей приводит к постепенному уменьшению прочности связи металл — углерод при переходе от германия к олову и свинцу. Относительная устойчивость этой связи изменяется в следующем порядке Ge > Sn Pb. [c.7]

    Реактивы и комплексные металлоорганические соединения германия. [c.234]

    Углерод С Кремний 51 Германий Ое Олово 5п Свинец РЬ До 3,4-10-5 До 10-3 10- —10-3 Кремний содержится в виде кремнийорганических веществ и в виде коллоидных частиц ЗЮг-Зп и Ое — в виде металлоорганических соединений. РЬ распределен во всех фракциях Группа азота Углерод наряду с водородом является основным элементом нефти. Содержание 51 в зоне нефти может достигать нескольких процентов [c.211]

    Масштабы использования металлоорганических соединений в органическом синтезе все время возрастают. Металлоорганические соединения содержат связь металл - углерод, которая в зависимости от природы растворителя, лигандов и атома металла является преимущественно ионной (а), ковалентной (б) или координационной (в). Соединения с такими элементами, как бор, кремний, германий и селен, также считаются металлоорганическими. [c.231]

    В настоящее время прогресс в развитии тонкого органического синтеза в значительной степени определяется использованием современных синтетических методов, основанных на применении металло- и элементоорганических соединений. Использование металлоорганических соединений, таких как соединения лития, магния, ртути, германия, олова, а также производных кремния и фосфора позволило осуществить прорыв в области синтеза сложных органических структур, природных соединений, малых циклов и др. напряженных молекул, оптически активных соединений, новых типов гетероциклов и т.п. [c.6]

    Синтез полиэтилена при ни,эком давлении впервые был осуществлен в середине 50-х годов посредством катализаторов, открытых немецким химиком К. Циглером. Изучая взаимодействие металлоорганических соединений алюминия и алюмогидридов с этиленом, Циглер обнаружил образование линейных алифатических соединений с реакционно-активным атомом металла в конце цепи (14]. Еще до этих работ М. Фишер в Германии в 1943 г. наблюдал образование из этилена твердого полимера как побочного продукта при получении на основе этилена масел. В качестве катализатора Фишер применял хлористый алюминий с порошкообразным алюминием, а реакцию проводил нри давлении 30—200 ат и температуре 130—180° С. [c.73]

    Приведенная схема заслуживает внимания потому, что восстановление галогенидов металлов до состояния низшей степени окисления с помощью реактивов Гриньяра убедительно доказано, а также потому, что известно и описано присоединение металлоорганических соединений к органическим производным двухвалентного германия [53, 139]. [c.150]

    Элементы, являющиеся менее ярко выраженными металлами (металлоиды), такие, как бор, кремний, германий, селен, мышьяк и т. д., также образуют органические производные некоторые из них имеют весьма важное значение, однако они занимают среднее положение между металлоорганическими соединениями и органическими производными неметаллов. Их лучше всего рассматривать отдельно, и они не включены в настоящую главу. [c.306]


    Германий образует металлоорганические соединения и не образует карбида, поэтому его можно плавить и сплавлять в графитовом тигле. [c.52]

    Природа связи углерод — металл изменяется в металлоорганических соединениях в широких пределах— от ионной до ковалентной. Увеличение электроположительных свойств металла и размеров его ковалентного радиуса усиливает ионный характер связи металл— углерод (например, в органических соединениях натрия) уменьшение электроположительности и уменьшение ковалентного радиуса делают связь с металлом более ковалентной (например, в органических соединениях германия). [c.332]

    Реакции в газовой фазе. Реакции этого типа используются в промышленности в широком масштабе для получения кремнийорганических соединений. Техника проста в трубку помещают порошкообразный металл или неметалл (обычно с катализатором, например медью), нагревают.трубку до нужной температуры (200—400°), пропускают через шихту пары галоидного алкила (например, хлористого метила) и металлоорганическое соединение конденсируют на выходе из реакционной трубки. Можно использовать как алкил-, так и арилгалогениды. Кроме органических производных кремния, этим путем можно получить органические производные алюминия, германия, цинка, теллура и олова. Следует отметить, что некоторые из них (например, производные А1 и 2п) на воздухе самопроизвольно воспламеняются и взрывают. [c.60]

    За углеродом в IV группе следуют четыре элемента, представляющие особый интерес для химии металлооргапических соединений кремний, германий, олово и свинец. С электронной точки зрения кремний и германий, конечно, являются не металлами, а полупроводниками, так как с понижением температуры их сопротивление увеличивается. Однако с химической точки зрения они являются и металлами и металлоидами, так как они электроположительнее углерода и в шкале электроотрицательностей Полинга лежат в области металлов. Они, так же как и серая модификация олова, вероятно, обладают кристаллической решеткой, сходной с решеткой алмаза. Это определяет их металлоидный характер, в то время как их соединения и алкильными и арильными группами, несомненно, являются металлоорганическими соединениями. Белое олово и свинец в электрическом, механическом, оптическом и химическом смысле являются истинными металлами, однако их металлоорганические соединения резко не отличаются от металлооргапических соединений предшествующих им элементов. [c.164]

    Металлоорганические соединения олова отличаются от металлоорганических соединений кремния и германия рядом важных свойств олово-углеродные связи слабее и более полярны органические группы легче замещаются и перегруппировываются существует большее число реакций в водных растворах сильнее выражена тенденция к образованию комплексных соединений и имеется гораздо большее число соединений, в которых металл двухвалентен. Эти общие положения (которые соответствуют теоретическим соображениям, изложенным в гл. 2) определяют ряд резко отличных свойств, которые также могут быть с успехом использованы. [c.201]

    Из мета.ллических элементоорганических высокомолекулярных соединений, или, как их называют, металлоорганических полимеров, известна большая группа веществ, в которую входят почти все основные полуметаллы и металлы периодической системы. Синтезированы и наиболее изучены металлоорганические соединения титана, алюминия, олова, сурьмы, мышьяка, германия и многих других элементов. [c.82]

    Однако измерение магнитной восприимчивости показало [10], что все металлоорганические соединения германия, олова и свинца, которые считались способными диссоциировать на свободные радикалы, обладают только-диамагнитными свойствами. Таким образом, свободные металлоорганические радикалы до сих пор неизвестны. Высокая реакционная способность, металлоорганических соединений КдМе—МеКд может быть объяснена малой энергией связи металл-металл. [c.243]

    Однако измерение магнитной восприимчивости показало 125], что все металлоорганические соединения германия, олова и свинца, которые считались способными диссоциировать на свободные радикалы, обладают только диамагнитными свойствами. Таким образом, свободные металлоорганические радикалы до сих пор неизвестны. Возможное объяснение отсутствия диссоциации соединений типа гексафенилди-станнана на радикалы заключается в том, что объемы атомов олова значительно больше объемов атомов углерода. Поэтому объемистые фенильные радикалы легко могут быть связаны с центральными атомами металлов без создания значительного пространственного напряжения, и без значительного ослабления центральной связи металл— металл. Высокая реакционная способность металлоорганических соединений КзМе—МеКз может быть объяснена малой энергией связи металл—металл. [c.354]

    Кремний, найденный в нефтях в количестве до нескольких процентов, находится в них в виде коллоидных частиц и летучих, возможно, кремнийорганических со связью Si - С. соединений. Предполагается, что РЪ существует в форме соединений типа алкил- или арил свинца, в большей степени концентрируясь в маслах, нежели в смолах и асфальтенах, а германий - в виде металлоорганических соединений и солей карбоновых и тиокарбоно-вых кислот. [c.17]

    Менее близко к литийорганическим соединениям стоят соли некоторых тяжелых металлов, которые также нашли применение в качестве металлирующих агентов. Среди них наиболее известны соли двухвалентной ртути [132] реакции замещения под действием этих солей исследовались еще в начальный период развития органической химии. Было найдено, что хлориды золота [133], теллура [134], таллия [135] и германия [136] также металлируют некоторые ароматические ядра. Наличие в этих металлирующих агентах сильной кислоты Льюиса и отсутствие в них сильно основного аниона заставляет предполагать, что механизм их действия отличается от мехайизма действия металлоорганических соединений Только в случае меркурирования (137 мёхйнйзм замещения водорода на атом тяжелого металла был исследовай достаточно подробно. [c.357]

    Для солей двухвалентных олова и свинца известны ацидокомплексы и комплексы типа кристаллогидратов, двойных солей. Соли свинца (главным образом РЬС1г и PbBrj) легко образуют продукты присоединения с пиридином, тиомочевиной и основаниями Шиффа. Хлориды германия, олова и свинца обладают способностью замещать хлор на алкильные и арильные радикалы, вплоть до превращения их в металлоорганические соединения. При этом по мере замещения хлора уменьшается способность хлорорганического соединения к комплексообразованию. Связи Ме—С ковалентны, хотя и в большей или меньшей степени полярны. Известно весьма большое число различных металлоорганических соединений, особенно для германия (см., например, монографию [537]). В катализе наиболее часто применяются алкилаты, арилаты и их галоидпроизводные. [c.343]

    Превосходная монография К- А. Кочешкова Синтетические методы Е области металлоорганкческих соединений эле.ментов IV группы издана Академией наук СССР 15 лет назад. Естественно, в настоящее время она должна быть дополнена обзорами работ за последние годы. Таким дополнением могут служить два обзора по органическим производным олова и германия, перевод которых выпускается отдельной книгой. В этих обзорах дана полная сводка работ, выполненных до 1960 г., рассмотрены новые методы синтеза и области практического использования органических производных олова и германия. Приведены таблицы, полностью охватывающие опубликованный материал по различным типам олово- и германийорганических соединений. Книга, несомненно, окажет большую помощь химикам, работающим в области металлоорганических соединений. [c.5]


    Имеются значительные разногласия в номенклатуре металлоорганических соединений, а литература по оловоорганическим соединениям в этом отношении ие является исключением. В обзоре, включая таблицы, авторы стремились следовать системе номенклатуры, принятой в настоящее время в hemi al Abstra t s [17]. Хотя названия кремний- и германийорганических соединений строятся по номенклатуре органических соединений и требуют окончаний силан и герман , для олово-и свинцовоорганических соединений в настоящее время используется номенклатура неорганической химии и окончания станнан и [c.10]

    Колебательные спектры ряда металлоорганических соединений гaJЮГtнидoв олова и германия. [c.226]

    Активньши катализаторами полимеризации олефинов [209] могут служить комбинации соединений металлов подгрупп А IV—VI групп, например титана, циркония, ванадия, тантала и хрома, с соединениями металлов подгрупп Б тех ше групп, обладающими восстанавливающей способностью, нанример с гидридами или алкидами германия, олова, свинца, мышьяка, сурьмы и висмута. Активность этих катализаторов возрастает при добавлении галогенидов металлов II—V групп [256—257]. Наиболее подходящие соотношения между металлоорганическим соединением [c.109]

    Металлоорганические соединения олова имеют ряд отличительных свойств по сравнению с соединениями кремния и германия. Связи олово — углерод являются более слабыми и более полярными поэтому органические группы легко обмениваются и перегруппировываются. Химия оловоорганических соединений изучалась начиная с 1852 г. однако только после 1940 г. было начато промышленное использование этих соединений. Опубликовано несколько обширных обзоров . В 1947 г. основан исследовательский институт соединений олова (Tin Resear h Institute). При этом было обнаружено, что до этого момента систематические исследования проводились лишь в незначительной степени и что возможность широкого промышленного использования практически не изучалась. В 1950 г. работы в этой области сильно разрослись расширено было также сотрудничество с рядом других исследовательских центров. [c.110]

    Из металлоорганических соединений, используемых в качестве НЖФ, авторами работы [62] были изучены органические соединения германия, олова и титана. Наибольшей полярностью из этой группы НЖФ обладают тетра-р-цианэтилолово (11-5) и полимер (и-12)  [c.54]

    Инфракрасная абсорбция также может принести много данных о структуре металлоорганических соединений, которые в свою очередь полезны для синтезов. Можно привести пример из химии оловоорганических соединений. Несколько лет назад нами обнаружено [8], что при гидролизе хлорида диметилолова в воде получаются положительные двузарядные ионы строения (СНз)25п2+ и что они образуют нерастворимые хроматы, фосфаты, иодаты и бензоаты. По своей растворимости и внешнему виду эти соли близко напоминают соответствующие соединения бария и неорганического двухвалентного олова 5п2+. Характерная для большинства органических соединений олова зр -гид,-ридизация, очевидно, исчезает в ионе (СНз)25п2+, но остается неясным, соответствует ли его поведение известной инертной паре -электронов в двухвалентных германии, олове, свинце и [c.66]

    Мы придерживаемся этого правила для всех металлоорганических соединений, за исключением соединений кремния, германия, мышьяка и сурьмы. Для соединений кремния принята особая система номенклатуры [4], а для германия, по аналогии с силанами, многие соединения названы как производные тер-мана ОеН4. Соединения мышьяка и сурьмы названы в соответствии с правилом 34 Международного союза химии, рассматривающим их как производные арсина и стибина. Правило 34 может быть применено также к органическим соединениям висмута, но в настоящее время на практике обычно применяют правило 48 и, например, (СбН5)зВ1 называют трифенилвисму-том, а не трифенилвисмутином [5]. [c.14]

    Получение промежуточного металлоорганического соединения, которое служит алкилирующим агентом, и последующее алкилирование галогенида металла с образованием нужного алкильного производного металла может быть достигнуто пропусканием паров металлгалогенида вместе с галоидным алкилом через слой гранулированного (или жидкого) металла, например алюминия, цинка или натрия, при повышенной температуре (150—400°). Этими синтезами пользовались для получения алкильных производных бора, кремния и германия [16]. Вероятно, этот метод можно использовать для получения алкильных соединений других элементов, галогениды которых летучи. Главное преимущество этого способа в том, что в сравнительно [c.68]

    Реакции с металлоорганическими соединениями. Эти реакции могут быть двух типов реакции сложных эфиров и реакции солей кислородсодержащих кислот. При получении металлалкилов или металларилов действием алкилирующих агентов, в качестве которых используются реактивы Гриньяра или алкильные производные щелочных металлов, иногда удобнее пользоваться не галогенидами металлов, а алкоксильными производными металлов с низшими алифатическими радикалами, так как последние вследствие растворимости в углеводородах или эфире алкилируются почти так же хорошо, как и галогениды металлов. Эфиры борной кислоты, например триэтокси-бор (С2Н50)зВ, несколько легче получить и очистить, чем галогениды бора они также удобнее в обращении. Это же можно сказать относительно эфиров некоторых других элементов, таких, как кремний или германий. Могут также встретиться случаи, когда при получении смешанных алкилпроизводных метал- [c.74]

    Тетрахлорид германия вступает в реакцию с металлоорганическими соединениями типа NaSeR или Mg rSeR (R—бутил, фенил, гг-толуол, /7-изопропил -бутилфенил п-хлорофол, а-нафтил, цик-логексил), образуя соединения типа Ge(SeR)4, выделяющиеся в виде желтых иглообразных кристаллов. [c.74]

    Все дигалогениды являются восстановителями, гидролизуются в нейтральных и щелочных растворах до GeO-aq в растворах галогеноводородных кислот образуют комплексные анионы [GeFgJ (вероятно, гибридизация р , обусловливающая пирамидальную структуру аниона). Дигалогениды имеют более высокие температуры кипения, чем соответствующие тетрагалогениды. Дигалогениды как соединения с более низкой валентностью германия, чем тетрагалогениды, окрашены интенсивнее последних. Интересной особенностью-дигалогенидов является способность к образованию полимерных продуктов при взаимодействии с некоторыми металлоорганическими соединениями. В целом дигалогениды являются более полярными соединениями, чем тетрагалогениды, и в отличие от последних не-растворяются в углеводородах. [c.99]

    Получение. Известные методы синтеза соединений этого типа основаны на взаимодействии тетрагалогенидов или галогензамещенных соединений германия с металлоорганическими соединениями и на реакции Вюрца-Фиттига. [c.213]

    Из металлов наиболее легко в реакцию вступают ртуть и свинец. Имеются сведения об образовании металлоорганических соединений при электролизе кетонов па катодах из кадмия [12] и германия [13]. Наблюдаемое интенсивное разрушение цинкового катода при электровосстановлении ацетона также приписывают образованию нестойкого ципкоргапического соединения [14]. [c.209]

    Наибольшее число работ по газовой хроматографии металлоорганических соединений относится к соединениям IV группы, что объясняется большим значением алкилпроизводных свинца и некоторых других элементов в качестве антидетонаторов, а также методов получения германия и олова для полупроводников из металлоорганических соединений. Общее число рабог по газовой хроматографии органических соединений олова и свинца превосходит 45. Некоторые из них посвящены препаративной газовой хроматографии для получения чистых металлоорганических веществ и будут рассмотрены в гл. VII. [c.187]


Смотреть страницы где упоминается термин Металлоорганические соединения германия: [c.110]    [c.416]    [c.91]    [c.66]    [c.38]    [c.117]    [c.213]    [c.254]    [c.21]   
Начала органической химии Кн 2 Издание 2 (1974) -- [ c.383 ]

Начала органической химии Книга 2 (1970) -- [ c.421 , c.422 ]




ПОИСК





Смотрите так же термины и статьи:

Металлоорганические соединения



© 2025 chem21.info Реклама на сайте