Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлоорганические соединения хрома

    Известны металлоорганические соединения хрома(П1), в которых органические радикалы присоединены к хрому тремя валентными связями. [c.243]

    Окислы, соли, металлоорганические и другие соединения хрома [c.482]

    Металлоорганические соединения могут быть определены наиболее просто как соединения, содержащие связь углерод — металл. Такое определение исключает вещества, подобные ацетату и метилату натрия, поскольку они содержат связи кислород — металл. К числу обычных металлов, образующих относительно устойчивые органические производные, относятся щелочные металлы 1 группы периодической системы (литий, натрий и калий), щелочноземельные металлы 2 группы (магний и кальций), алюминий из 3 группы, олово и свинец из 4 группы и переходные металлы, такие, как цинк, кадмий, железо, никель, хром и ртуть. Органическими остатками могут быть алкил, алкенил, алкинил или арил. Ниже приведены некоторые типичные примеры. [c.306]


    На примере металлоорганических соединений хрома, при химическом связывании которых с поверхностью алюмосиликата или силикагеля протекает полимеризация, изучен механизм образования гракс-полимеров и сополимеров диенов. Металлоорганический катализ на поверхности открывает новые перспективы и для полимеризации олефинов. [c.115]

    Карабанов Н. Т., Прохорова Л. Ю. Исследование неподвижных жидких фаз для газохроматографического разделения металлоорганических соединений хрома и ванадия. Сб. Физико-химические методы анализа . Горький, 1981, с. 72. [c.243]

    Металлы, имеющие каталитическое действие в виде металлоорганических соединений, следующие алюминий, кобальт, железо, хром, цирконий, ванадий, натрий, калий, литий, цинк и др. Их каталитическое действие проявляется эффективно особенно в присутствии хлористого никеля и четыреххлористого титана [187 [. [c.321]

Рис. 16. Спектры металлического хрома с объемноцентрированной кубической решеткой, некубического карбида (СГ7С3) и двух металлоорганических соединений хрома. Рис. 16. Спектры металлического хрома с объемноцентрированной кубической решеткой, некубического карбида (СГ7С3) и двух металлоорганических соединений хрома.
    На состав воды крупных водохранилищ большое влияние оказывают стоки промышленных предприятий. Например, по нашим исследованиям [Абдрахманов, 19911 1994], в Павловское водохранилище на р. Уфе поступают стоки из Челябинской и Свердловской областей, содержащие тяжелые металлы (медь, цинк, железо, никель, хром, мышьяк, ртуть), соединения серы и др. в значительных объемах (табл. 20). Идет накопление в донных отложениях древесины и ее отходов (до 1 млн. м ), тяжелых металлов, органики, создавая условия для образования различных металлоорганических соединений. [c.147]

    Кроме диспергирования воды в мазуте, уменьшить содержание сажистых частиц в продуктах его сгорания можно за счет применения присадок. В качестве таких присадок в большинстве случаев используют металлоорганические соединения, которые в процессе сгорания топлива распадаются с образованием окисла металла, являющегося катализатором в реакциях окисления частиц сажи. Проведенные исследования по изучению действия присадок показали, что железо, марганец, кобальт, никель и хром существенно снижают образование сажи при сжигании нефтепродуктов, а эффективность применения натрия, цинка, свинца, ванадия мала. [c.353]

    Среди других металлоорганических соединений высокими антидетонационными свойствами обладают некоторые соединения, содержащие железо, медь, кобальт, хром, калий, теллур, таллий и др. Наиболее исследованы в качестве антидетонаторов соединения железа и меди пентакарбонил железа (ПКЖ), дициклонентадиенил железа (ферроцен) и внутрикомплексные солн меди. Физические свойства железоорганических антидетонаторов приведены в табл. 5. 36. [c.306]

    Электрохимия относится к тем разделам химической науки, которые на протяжении последних десятилетий развивались особенно быстро и достигли уровня, при котором, подобно химической термодинамике, могут служить надежной основой химической технологии. Уже в настоящее время электрохимические методы широко и плодотворно используют в промышленности. Они лежат в основе таких многотоннажных производств, как получение хлора и каустической соды, кислородных соединений хлора, марганца, хрома, надсерной кислоты, элементного фтора, некоторых органических и металлоорганических соединений. Эти методы составляют основу технологии получения многих металлов, включая алюминий, магний, медь, цинк, свинец, бериллий, титан. С их помощью наносят защитные декоративные металлические покрытия на изделия мащиностроения и приборостроения. [c.5]


    Кроме фосфитов и сернистых соединений в качестве антикоррозийных присадок заявлены некоторые соли высших жирных кислот, например олеат хрома, а также некоторые металлоорганические соединения. [c.711]

    Карбонильные соединения хрома и других металлов VI группы взаимодействуют с ароматическими соединениями при повышенных температурах, а также, возможно, и высоких давлениях с образованием арнлкарбонильных соединений, как, например, СбНбСг (СО) 3 — твердого вещества с температурой плавления 162—163° С. Эти арилкарбонильные соединения предложено использовать в качестве присадок к топливам, катализаторов в органических синтезах и для производства металлических зеркал Указывается, что при использовании металлоорганических соединений хрома в качестве антидетонационных присадок снижаются отложения на стенках цилиндров двигателей по сравнению с обычными добавками  [c.143]

    Процесс заключается в следующем. Пары МОС из испарителя поступают в реактор, где помещаются предметы, которые требуется покрыть слоем металла, нагретые до температуры, превышающей температуру разложения хроморганического соединения. При контакте с нагретой поверхностью происходит разложение МОС и образуется хромовая пленка. В связи с тем, что каждое из входящих в смесь хроморганических соединений обладает индивидуальной температурой кипения и давлением паров, а а также определенной температурой разложения, возникают трудности в поддержании требуемой концентрации паров металлоорганического соединения хрома в реакторе, а следовательно, и в постоянстве скорости образования хромового покрытия и, главное, в воспроизводимости электрофизических параметров, таких, как сопротивление хромовых пленок. В связи с этим при использовании бисареновых соединений переходных металлов для получения металлических покрытий термическим разложением возникает необходимость разделения этих соединений на индивидуальные вещества. [c.104]

    Можно видеть, что в основном продукте содержатся элементы, способные образовывать соединения данного типа. В большом количестве в синтезируемом МОС присутствуют примеси непрореа-гировавших исходных веществ и побочных продуктов реакции. Так, при синтезе бисареновых зт-комплексов получается смесь гомологов и изомеров [4—6]. Содержание основных продуктов син теза металлоорганических соединений хрома, молибдена и ванадия приведены в табл. 2. [c.135]

    Однако несмотря на хорошее разделение хроматографических полос очищаемое МОС методом препаративной газовой хроматографии может быть загрязнено продуктами взаимодействия с жидкой фазой. Был испытан метод жидкостной термодиффузии для разделения смеси металлоорганических соединений хрома. Работа проводилась на колонне высотой 0,5 м. Разделение смеси бисэтилбензолхрома и эти.тбензолдиэтилбензолхрома в течение 5 суток работы колонны не привело к положительному результату. Однако, как и при кристаллизации, отделение инородных примесей шло успешно. [c.147]

    В металлоорганических соединениях хром, как правило, пятивалентен, например в производных с 3, 4 или 5 фенильпыми группами. [c.259]

    В. Н. Кострюков — термодинамические функции веществ в конденсированном состоянии, температуры и изменения энтальпии при фанзовых переходах металлоорганических соединений хрома, молибдена, вольфрама и частично марганца и рения  [c.8]

    Для повышения скорости горения смесевых топлив используют катализаторы, содержащие окислы меди, хрома, железа, магния, железных, медных и магниевых солей хромовой и метахромистой кислот, металлоорганических соединений. Так, ферроцен увеличивает скорость горения топлива на основе перхлората аммония в 2 раза. Для снижения скорости горения в качестве ингибиторов горения применяют фтористые соединения (1лР, Сар2, ВаРз) и гетеромолибдаты. Так, добавка 2 % Ь1Р к полиуретановому топливу снижает скорость горения в 2 раза. [c.8]

    Влияние металлоорганических соединений на обессеривание нефтяного кокса. Ранее нами рассмотрены вероятные варианты реагирования сернистых соедипеиий с зольными компонентами с образованием сульфатов, сульфидов и др., влияющих существенно на процесс обессеривания. Все эти реакции возможны в условиях ирокаливання и обессеривания нефтяных коксов также в среде активных составляющих дымовых газов. Поэтому представляет интерес обобщить экспериментальный материал по превращениям в процессе прокаливаиия соединений железа, кремния, кальция, натрия, ванадия и алюминия, распространенных в материнской золе, а также окислов, которые могут попасть в нефтяной кокс при разрушении прокалочных иечей (окислы хрома, магния и др.). [c.225]

    Компонентами катализатора Циглера являются а) металлоорганическое соединение металлов II или III группы, особенно алкила-ты алюминия, цинка или магния, или гидриды щелочных металлов, алкилгидриды металлов типа Rn М — X, б) соль, например галогенид, алкоголят или ацетилацетоиат металла IV, V и VI групп, особенно хрома, молибдена, тория, ванадия или циркония. По-видимому, между двумя компонентами происходит реакцня, в которой металл компонента [б)] частично алкилируется и восстанавливается, например в случае титана — до степени окисления 3 или ниже. [c.436]

    Исследованию подвергались различные катализаторы хромит меди, окись никеля, окись магния, окись цинка, двуокись марганца и металлический никель. Существе 1ным моментом при исследовании был контроль за содержанием добавок металлов, захваченных катализаторами при обработке их металлоорганическими соединениями. Для определения содержания добавок в различных образцах катализатора использовались специальные методы анализа полярография, спектральный анализ, колориметрия. [c.152]

    В. Б. Шуром) реакцию фиксации молекулярного азота при комнатной температуре и нормальном давлении посредством комплексных металлоорганических соединений титана, хрома, молибдена, вольфрама и железа. Осуществил реакцию азота с водородом в присутствии металлоорганических соединений в мягких условиях. Показал (1970, совместно с сотрудником И. С. Коломннковым) возможность фиксации углекислого газа комплексами переходных металлов. Создал новые катализаторы гомогенного гидрирования олефинов, тримеризации ацетиленов, полициклотримеризацни. Впервые получил соединения, в которых графит выступает в качестве органического лиганда. [c.115]

    Синтез Фишера — Гафнера, помимо быс-аренных комплексов хрома, молибдена и вольфрама, оказался применим и для получения подобных комплексов многих остальных переходных металлов различных групп. Этот метод явно непригоден для синтеза бис-аренных комплексов марганца и технеция. Физические свойства аренных металлоорганических соединений представлены в табл. 8-2. [c.459]

    Тетрагидрофурановые растворы производных диалкил- и ди-арилникеля (II) сравнительно нестабильны, если не поддерживать низкой температуры. Однако эти металлоорганические соединения способны циклизовать ацетиленовые углеводороды, хотя несколько иначе, чем хроморганические соединения [125]. Димезитилникель, например, конденсирует дифенилацетилен с образованием гексафенилбензола и не поддающегося дальнейшей переработке полимерного вещества, близкого по своему составу к тетрамерной форме дифенилацетилена, содержащей один атом никеля. Определяющее влияние соотношения реагентов на соотношение продуктов в этом случае также указывает на наличие весьма реакционноспособного промежуточного продукта, подобного тому, который предполагается при конденсации ацетиленов на хроме. Так, когда полученный из 1 моля бромистого никеля и 2 молей гриньяровского реагента в тетрагидрофуране [c.477]


    Приведенные примеры иллюстрируют трудность рассмотрения механизма формирования микроструктур па циглеровских системах, характеризующихся весьма сложным составом. Первые исследования, проведенные в этой области, исходили из того, что стереоспецифическая полимеризация диенов и олефинов не имеет принципиальных отличий и что процесс протекает в ооювном по связи С—А1 с тем или иным участием переходного металла. Одиако, по мере развития исследований, стало ясно, что главная роль в этом процессе принадлежит переходному металлу и что алю-минийоргапич. соедипеиия, хотя и пригашают участие в образовании каталитич. комплекса, пе являются необходимыми компопентами систем. Наиболее интересными в этом свете представляются работы последних лот по полимеризации диенов под влиянием я-аллиль-ных комплексов переходных металлов. Из указанных в табл. 6 систем особое место занимают высшие окислы хрома, действующие без участия металлоорганических соединений и проявляюпцм высокую стереоспецифичность для траве-полимеризации диенов. [c.355]

    С ЭТОЙ ТОЧКИ Зрения можно предположить, что металлооргаиические соединения циркония, таллия и хрома в опытах Вудса реагируют через стадию образования свободных радикалов, а термически относительно более устойчивые ароматические соединения кобальта в опытах Хараша и металлоорганические соединения серебра и золота в опытах Вудса реагируют без образования кинетически независимых частиц—через стадию возникновения активного комплекса. [c.287]

    Значение алюминийорганических соединений резко возросло после открытия Циглером каталитических свойств алюмипийалкилов при полимеризации а-олефинов. Для достижения хороших результатов необходим смешанный катализатор наиболее часто применяют комбинацию триэтил-алюминия с три- или тетрахлоридами титана (СК, 58, 541). Для приготовления катализаторов могут быть использованы диэтилалюминийхлорид и многие другие металлоорганические соединения. Полимеризация по Циглеру, впервые описанная на примере этилена, проходит при комнатной температуре и атмосферном давлении. По одной из методик катализатор получают добавлением четыреххлористого титана к дизельному маслу, получаемому синтезом Фишера — Тропша (стр. 564) и содержащему диэтилалюминийхлорид все операции проводят в атмосфере азота. При пропускании через эту смесь этилена образуется полиэтилен. В других случаях могут быть использованы металлы типа хрома, никеля, циркония и молибдена. [c.415]

    Не так давно был получен ряд металлоорганических соединений тяжелых металлов, в том числе элементов нечетных рядов. Получены соединения меди, серебра, золота, хрома, железа, платины и пр. Свойства этих соединений сильно отличаются от свойств обычных металлоорганических соединений. Большей ч астью они отличаются значительной неустойчивостью уже при обыкновенной температуре. [c.356]

    В литературе имеются сообщения о новых путях получения полиэтилена при низком давлении, исключающих применение металлоорганических соединений [158]. Катализатором полимеризации в этом случае служит окись хрома, нанесенная на носитель, состоящий из Si02 и АЬОз. Оптимальные условия полимеризации этилена в среде растворителя (пентан, октан) температура 135—190 и давление 35 а/иж в этих условиях этилен полностью превращается в полиэтилен, который имеет средний мол. в. 5000—30 ООО, среднюю плотность 0,952, т. пл. 113—127° и характеризуется высокой механической прочностью и морозоустойчивостью. (Метод Филипнса). [c.180]

    Активньши катализаторами полимеризации олефинов [209] могут служить комбинации соединений металлов подгрупп А IV—VI групп, например титана, циркония, ванадия, тантала и хрома, с соединениями металлов подгрупп Б тех ше групп, обладающими восстанавливающей способностью, нанример с гидридами или алкидами германия, олова, свинца, мышьяка, сурьмы и висмута. Активность этих катализаторов возрастает при добавлении галогенидов металлов II—V групп [256—257]. Наиболее подходящие соотношения между металлоорганическим соединением [c.109]

    Л. Мейер, профессор химии в Тюбингене, известен также различными исследованиями по физиологической химии, неорганической химии (хлориды иода, молибдена, хрома) и органической химии (насыщенные углеводороды, металлоорганические соединения и т. д.). Его книга Современные теории химии и их значение для химической статики имепа большой успех (5-е немецкое издание вышло в 1884 г.) и была переведена на английский и французский языки Мейер написал, кроме того, Основы теоретической химии (1890) и в сотрудничестве с К. Зейбертом Атомные веса элементов, вновь пересчитанные из первоначальных чисел (1883) [c.271]

    В соответствии с современными представлениями считается, что при дегидрировании парафиновых углеводородов до олефино-вых на АХ катализаторах возможны два механизма гомолитичес-кий и гетеролитический (6, 7, 10]. В обоих случаях предполагается, что хемосорбция углеводорода является первой стадией рассматриваемого процесса, которая происходит на поверхности катализатора с разрывом С—Н связи, причем алкильная группа присоединяется к иону хрома с образованием поверхностного, металлоорганического соединения активными центрами реакции дегидрирования являются координационно ненасыщенные ионы хрома, и хемосорбция реагентов происходит путем заполнения октаэдрической координации этих ионов (10]. [c.6]

    Непереходные элементы — неметаллы (галогены, кислород, азот и т. д.) и металлы (литий, натрий, магний и т. д.) — образуют алкильные (и подобные им) производные со связью углерод — элемент. Переходные элементы (железо, кобальт, никель, марганец, хром, ванадий и т. д.) резко отличаются от непереходных элементов характером связи углерод — металл. К металлоорганическим соединениям этого типа относятся комплексы переходных элементов с непредельными углеводородами (этилен, галогеноаллилы, ацетилен), циклическими углеводородами (циклопентадиен, бензол) — дициклопентадиенильные и бис-ароматические (ареновые) производные — и другие комплексы, например карбонилы переходных металлов Fe( O)5, Ni( 0)4, [Со(СО)4]2 цианиды переходных металлов ферро- и феррицианидные анионы [Ре(СМ)б] ", [Ре(СМ)б] и т.д. Органические соединения этой группы элементов, в частности сендвичевые соединения, будут описаны позднее (с. 527). [c.322]

    Ha пиридилметильных производных Джонсон и oTp. i изучили также механизм передачи алкильного радикала от хрома к таллию. В этой связи следует упомянуть аналогичное образование ст-связан-ного кобальторганического соединения . Интересно, что из оптически активного а-(2-пиридил)-этилбромида было получено рацемическое металлоорганическое соединение, однако нельзя утверждать, является ли это следствием механизма реакции или последующей рацемизации [c.68]

    Иодметильное или дигалоидное производные хрома дают с нитратом ртути не металлоорганические соединения, а только продукты окисления. [c.69]


Смотреть страницы где упоминается термин Металлоорганические соединения хрома: [c.82]    [c.225]    [c.481]    [c.557]    [c.105]    [c.501]    [c.57]    [c.51]    [c.55]    [c.176]    [c.255]   
Начала органической химии Кн 2 Издание 2 (1974) -- [ c.416 , c.417 , c.436 ]




ПОИСК





Смотрите так же термины и статьи:

Металлоорганические соединения



© 2025 chem21.info Реклама на сайте