Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Антигенная специфичность изучения

    Для изучения свойств вирусов широко используют и иммунологические методы. Любой вирус, будь то вирус растений, животных или бактерий, при введении кроликам или другим подходящим млекопитающим ведет себя как эффективный антиген. Специфичность образующихся [c.44]

    Большое значение приобрело изучение хим. строения рецепторов, посредством к-рых лимфоидные клетки специфически взаимодействуют с антигеном (эта р-ция обусловливает синтез антител, специфичных для данного антигена). [c.218]


    Один метод локализации со специфической физиологической активностью был позаимствован нз ПЭМ. Этот метод меток поверхности клетки, который, будучи применен к образцам для РЭМ, приводит к образованию на поверхности клетки морфологически различаемых или аналитически идентифицируемых структур. Такие методики в сочетании с растровой электронной микроскопией высокого разрешения позволяют изучать природу, распределение и динамические свойства антигенных и рецепторных состояний на поверхности клеткн. Методы нанесения меток на поверхность клетки в общем случае достаточно сложны и включают процедуры иммунохимической и биохимической очистки. Подробные ссылки на них можно найти в работах [359—361], но сущность методик состоит в следующем. Для крепления антител в определенных антигенных состояниях на поверхности клетки используются стандартные иммунологические процедуры. Хитрость состоит в том, чтобы модифицировать антитела таким образом, чтобы они также несли морфологически различимую метку, такую, как латексные шарики или сферы из двуокиси кремния, распознаваемый вирус, как, например, вирус табачной мозаики, или один из Т-четных фагов, как показано на рис. 11.18, илн белковая молекула известных размеров, как ферритин или гемоцианин. В работе [362] (рис. 11.19) использовались гранулы золота, которые имеют большой коэффициент вторичной электронной эмиссии. Одна часть антитела имеет средство для специфичного антигенного закрепления на поверхности клетки, в то время как другая часть несет морфологически различимые структуры. В настоящее время иммунологические методы достигли такого уровня, когда они не могут быть использованы для изучения как качественных, так и количественных характеристик поверхности клетки [363, 364]. [c.244]

    Метод агглютинации используется также для изучения растворимых антигенов. Они связываются химическим путем с эритроцитами или частицами латекса, образуя таким образом частицы, называемые сенсибилизированными. Антитела противо-растворимых антигенов, добавляемые в суспензию таких частиц, косвенным образом провоцируют агглютинацию сенсибилизированных частиц. Этот способ называется пассивной, или косвенной, агглютинацией [9, 72, 109]. Принцип его схематически представлен на рисунке 4.3. Указанная методика позволяет также использовать антитела вместо антигенов для получения сенсибилизированных частиц. Применение моноспецифических антител позволяет в первую очередь количественно определять содержание отдельного белка в смеси белков. Если антисыворотка не является строго специфичной, то для определения количества содержащегося белка необходимо, чтобы используемые для сенсибилизации частиц антигены были очищены от примесей, которые могут реагировать с неспецифическими антителами в сыворотке. [c.98]


    Гомологичные белки, вьщеленные из организмов различных видов, обнаруживают гомологию последовательностей это означает, что наиболее важные положения в полипептидных цепях гомологичных белков заняты одними и теми же аминокислотами независимо от вида организмов. В других положениях гомологичные белки могут содержать разные аминокислоты. Чем ближе в эволюционном отношении виды, тем более сходны аминокислотные последовательности их гомологичных белков. Таким образом, последовательности гомологичных белков указывают, что содержащие их организмы произошли от общего предка, но в ходе эволюции претерпели изменения и превратились в разные виды. Аналогичные выводы были сделаны исходя из результатов изучения специфичности антител по отношению к антигенам гомологичных видов. [c.160]

    Вследствие крайней сложности белкового набора, синтезируемого клетками млекопитающих, изучение всей проблемы на молекулярном уровне требует много времени и часто приводит к неоднозначным результатам. Практически очень интересной кажется область иммунологических исследований изучается реакция многоклеточных систем на введение чужеродных тел-антигенов. Антигены — это, как правило, макромолекулы-белки или полисахариды попадая в организм, они вызывают образование особых плазматических клеток, синтезирующих антитела. Антитела, покинув клетку, вступают в контакт с антигеном. Антитела имеют в молекуле две точки одна специфична и в отношении химической природы, и в отношении пространственной конфигурации, а другая сходна у различных антител. Антитела соединяются с антигеном, и продукт реакции выводится из организма особыми клетками, поглощающими весь возникший комплекс антиген — антитело. Вероятно, появление антигена стимулирует образование плазматических клеток из каких-то предшественников и затем вызывает синтез специфической м-РНК, на которой и получается белок, рассчитанный на захват данного антигена. [c.214]

    Еще более убедительные данные были получены при изучении реакций с конъюгированными антигенами, содержащими комплексные гаптены. На основании количественных исследований подавления реакции антител к простым гаптенам Хукер и Бойд [13, 14] сделали вывод, что на специфичность антител в некоторой степени влияют остатки тирозина или гистидина в белке, с которыми соединялись диазотиро-ванные амины. Это наводит на мысль, что антигенная детерминанта в конъюгированных антигенах не такая простая структура, как гаптен (фиг, 13). Ланд- [c.52]

    Хотя Сингер полагал, что в двух изученных им системах некулоновские силы (которые следует считать второстепенными), если справедлив аргумент, сформулированный выше, определяют только половину прочности связи антигена с антителом, есть случаи, когда связь в комплексе, по-видимому, полностью осуществляется за счет некулоновских сил. Эти случаи относятся к антигенам, которые не содержат положительно или отрицательно заряженных групп в своих детерминантах. Хороший пример антигенов такого рода представляют группоспецифические антигены крови (гл. VII). У них не имеется заряженных групп, по крайней мере в участках, обусловливающих антигенную специфичность. Кроме того, группоспецифические антигены крови прочно и специфично реагируют не только с антителами, но и с особыми, специфическими по отношению к этим антигенам растительными белками, которые я назвал лектинами (см. гл. VI). Эти реакции изучались количественно [1, 4]. Каруш [6] считает, что взаимодействие между [c.152]

    При изучении мутантов бактерий мы сталкиваемся с мутированными белками, измененными в одном аминокислотном звене. Чаще всего подобные мутированные белки имеют одну и ту же антигенную специфичность и образуют одинаковые антитела. Гомологические белки разных видов животных также похожи по своему аминокнслотному составу, хотя и гораздо дальше отстоят друг от друга, чем мутанты в пределах вида. В этом случае антигенные свойства полностью различны. Например, сывороточный альбумин лошади и коровы не сильно отличаются по аминокислотному составу. Однако организм лошади не образует антител к своему белку, но легко образует к чун еродному альбумину коровы. Значит, в клетках лимфатической системы [c.501]

    Среди множества проблем иммунологии, одну из них, если иметь в виду прежде всего чисто познавательный аспект этой области биологических знаний, следует отнести к самой фундаментальной, поскольку во многом она определяет возможность решения остальных. Эта проблема связана с изучением на атомно-молекулярном уровне механизмов узнавания и ответных реакций иммунной системы на появление в организме инфекционных антигенов - чужеродных белков, вирусов, бактерий, патогенных веществ. Важный шаг в познании принципов функционирования иммунной системы был сделан в 1959 г. Ф. Бер-нетом, разработавшим так называемую теорию клональной селекции, которая и по сей день пользуется всеобщим признанием [265]. Первоначально теория имела сугубо гипотетический характер. Однако заложенные в ней идеи оказались плодотворными и она вскоре смогла стать для экспериментальных исследований не только системой основополагающих научных принципов, но и конкретной программой поиска. В настоящее время эта программа выполнена и сегодня теория клональной селекции представляет собой скорее констатацию надежно установленных фактов, чем концептуальную основу дальнейшего развития иммунологии [266]. Специфичность антигенной реакции лимфоцитов, согласно теории Бернета, обусловлена наличием на поверхности Т- и В-клеток рецепторных белков, избирательно взаимодействующих с определенными антигенами. Связывание с ними рецепторов активирует клетку и вызывает ее эффективное размножение. Таким образом стимулируется пролиферация лимфоцитов, содержащих на своих поверхностях именно те рецепторы, которые, с одной стороны, комплементарны чужеродному антигену, а с другой - могут адекватно сигнализировать клетке о необходимости антиген-специфцч-ного ответа. По теории клональной селекции иммунную систему образуют миллионы различных клеточных семейств или клонов, каждый из которых состоит из Т- или В-лимфоцитов, имеющих общих предшественников. Так как во всех случаях клетка-предшественница детерминирована к синтезу определенного антиген-специфичного белка рецептора, то все клетки одного клона имеют одинаковую антигенную специфичность и, следовательно, могут ответить на сигнал рецептора только одним, присущим клеткам лишь данного клона, способом. Антигенами, как правило, являются белки и полисахариды. На поверхности этих молекул имеются участки, называемые антигенными детерминантами или эпитопами, которые предрасположены к взаимодействиям с антигенсвязывающим участком антитела В-лимфоцита или 3 67 [c.67]


    Изучение гаптенов имеет не только теоретическое значение для понимания явления антигенной специфичности, но и практическое приложение. Многие биологически важные соединения, включая пептищные и стероидные гормоны, циклические АМФ и ГМФ, лекарства и т.д., являются низкомолекулярными, неиммуногенными соединениями. Их конъюгация с иммуногенным белком позволяет получать антигаптеновые антитела. Такие антитела затем используются в тест-системах для определения уровня ана- [c.40]

    Схема опыта крест-накрест легко осуществима при бласт-трансформации в культуре нормальных аллогенных клеток. Однако в других потенциальных приложениях метода (например, при изучении связывания опухолевых антигенов или гаптенов либо связывания антигена предполагаемыми линиями антигеи-специфических Т-клеток, несущих неизвестную антигенную "специфичность) использование этой схемы может быть затруднено. [c.316]

    Для использования моноклональных антител в изучении белковых антигенов важно знать, с одной и той же или разными антигенным и детерминантами (эпитопами) антигена связываются полученные антитела. Эпитопную специфичность антител определяют методом их конкурентного связывания. Антитела одного клона конъюгируют с пероксидазой (с. 317). Берут 96-луночный микропланшет для ИФА и сорбируют в лунках антиген, как обычно (с. 320). После тщательной отмывки в каждую из 12 лунок вносят по 75 мкл культуральной жидкости того же или других клонов или раствор очищенных антител — 100 мкг/мл (рис. 42). Все остальные лунки содержат 50 мкл фосфатного буфера с 1%-ным БСА. Делают серийные разведения антител, перенося по 25 мкл раствора из каждой лунки в соседнюю (рис. 42) на 5—6 лунок. К каждой лунке добавляют 10 мкл меченных пероксидазой автител в концентрацию 20 мкг/мл. Инкубируют 2—4 ч при комнатной температуре при постоянном встряхивании. После тщательной [c.322]

    Важное направление в И.-изучение хим. строения рецепторов, посредством к-рых лимфоидные клетки специфически взаимод. с антигеном. Эта р-ция обусловливает синтез антител, специфичных для данного антигена, и появление особой категории лимфоцитов, ответственных за р-ции клеточного иммунитета (иммунитет, опосредованный клетками иммунной системы). Показано, что антигенные рецепторы лимфоцитов, происходящих из костного мозга (В-лимфо-циты), имеют иммуноглобулиновую природу и отличаются от сывороточных иммуноглобулинов лишь небольшим участком своих тяжелых полипептидных цепей, встраивающихся в цитоплазматич. мембрану этих клеток. После активации В-лимфоцитов антигеном при участии ряда медиаторов (напр., интерлейкинов, интерферонов) эти клетки приобретают способность продуцировать антитела. [c.218]

    Иммуноглобулинами называют группу сывороточных гликопротеинов, выполняющих функцию антител и продуцируемых в ответ на стимулирующее действие антигенов. В настоящее время известно пять классов иммуноглобулинов 1 0, 1 А, 1дМ, IgD и IgE. Основу структуры всех изученных иммуноглобулинов (в мономерной форме) составляют четыре полипептидные цепи, связанные дисульфидными мостиками. Обнаружены полипептидные цепи двух типов, так называемые легкие и тяжелые, причем каждый мономер содержит по две цепи каждого типа (рис. 26.3.6). Существуют два типа легких цепей — каппа (и) и лямбда (к), общие для всех классов иммуноглобулинов, причем индивидуальные иммуноглобулины в мономерном виде содержат 3 качестве легких цепей либо две х-, либо две > -цепи. Тяжелые цепи специфичны для иммуноглобулинов и определяют их класс. Каждый класс иммуноглобулинов содержит характерное для него количество углеводов, которое может колебаться от 22 моносаха-Ридных остатков в до 82 остатков в мономерном 1 М. Из полимерных форм иммуноглобулинов описаны димерный 1 А и пентамерный 1 М. Макромолекулярный 1 М, как полагают, со- бржит пять мономерных единиц, соединенных в виде кольца, из которого радиально выступают пять клешней . [c.269]

    Горизонты энзимологии. В литературе появляются работы, в которых делаются попытки прогнозирования дальнейшего развития энзимологии на ближайшее десятилетие. Перечислим основные направления исследований энзимологии будущего. Во-первых, это исследования более тонких деталей молекулярного механизма и принципов действия ферментов в соответствии с законами югассической органической химии и квантовой механики, а также разработка на этой основе теории ферментативного катализа. Во-вторых, это изучение ферментов на более высоких уровнях (надмолекулярном и клеточном) структурной организации живых систем, причем не столько отдельных ферментов, сколько ферментных комплексов в сложных системах. В-третьих, исследование механизмов регуляции активности и синтеза ферментов и вклада химической модификации в действие ферментов. В-четвертых, будут развиваться исследования в области создания искусственных низкомолекулярных ферментов —синзимов (синтетические аналоги ферментов), наделенных аналогично нативным ферментам высокой специфичностью действия и каталитической активностью, но лишенных побочных антигенных свойств. В-пятых, исследования в области инженерной энзимологии (белковая инженерия), создание гибридных катализаторов, сочетающих свойства ферментов, антител и рецепторов, а также создание биотехнологических реакторов с участием индивидуальных ферментов или полиферментных комплексов, обеспечивающих получение и производство наиболее ценных материалов и средств для народного хозяйства и медицины. Наконец, исследования в области медицинской энзимологии, основной целью которых является выяснение молекулярных основ наследственных и соматических болезней человека, в основе развития которых лежат дефекты синтеза ферментов или нарушения регуляции активности ферментов. [c.117]

    Изучение явления специфической преципитации, возникающей при взаимодействии антител с антигенами in vitro, в конце прошлого столетия привело к возникновению новой научной дисциплины — иммунохимии, которая включает изучение химических аспектов иммунитета, в первую очередь химии антигенов, антител и их взаимодействия. Высокая чувствительность и специфичность иммунологических реакций позволили применить их с большой пользой для исследования белков. Иммунохимия не только увеличила методические возможности изучения белков, но и создала новое направление их анализа. [c.15]

    Взаимодействие антиген—антитело, основанное на компле-ментарности определенных участков структуры антигена и белкового антитела, отличается чрезвычайно высокой чувствительностью и специфичностью. В области полисахаридов иммунологические реакции используются как для определения гомогенности и степени чистоты образца, так и для изучения структуры . [c.518]

    Полисахариды капсулы пневмококков Пневмококки — одна из немногих групп микроорганизмов, хорошо изученных в иммунохимиче-ском отношении. В настоящее время различают 75 антигенных типов пневмококков типовая специфичность связана с различиями в строении полисахаридов капсулы этих микроорганизмов. Специфические антипневмо-кокковые сыворотки получаются достаточно легко и широко применяются при установлении строения полисахаридов иммунохимическими методами . В частности, перекрестные реакции антипневмококковых сывороток с полисахаридами известного строения были использованы и для изучения строения некоторых полисахаридов капсулы пневмококков. [c.549]

    Для выяснения полного строения гликопротеина нужно решить три основные задачи 1) установить сбщий тип построения гликопротеина (архитектонику гликопротеина) 2) установить природу связи между пептидными и полисахаридными цепями 3) установить мономерную последовательность в пептидных и полисахаридных цепях. Решение каждой из этих проблем требует особых подходов, хотя, естественно, эти проблемы неотделимы и часто решаются одновременно. Для изучения связи биологической функции гликопротеина с его строением особенно важно выяснение структуры тех фрагментов биополимера, которые ответственны за его специфичность. Эти группировки являются чаще всего олигосахаридными цепями. Для гликопротеинов, обладающих иммунологическими свойствами, они носят обычно название иммунологических или антигенных детерминантов. [c.568]

    Новые возможности для специфичного выделения отдельных фрагментов белка открылись а связи с разработкой техники моноклональных антител (рис. 15). Иммуносорбенты на основе моноклональных антител к различным участкам белковой молекулы могут быть использованы для селектианого выделения пептидных фрагментов, несущих антигенные детерминанты этих антител. Поскольку в основном антигенные детерминанты находятся во фрагментах полипептидной цепи, располагающихся на поверхности глобулы, метод применяется также для изучения топографии белков. [c.56]

    Пептидный синтез служит надежным средством доказательства строения природных пептидно-белковых веществ. Синтетические пептиды широко используются для структурно-функциональных исследований. С помощью химических методов удается получать аналоги биологически активных пептидов, в том числе циклические производные с заданными свойствами (например, с пролонгированным, усиленным или избирательным действием), а также аналоги с остатками небелковых аминокислот. Синтетические пептидные фрагменты белков применяются для изучения их антигенных свойств и получения специфичных к отдельным участкам полипептидных цепей антител, используемых в структурно-функщюналь-ном анализе и в создании диагностикумов и вакцин. Методами пептидного синтеза получаются (в том числе и в промышленном масштабе) многие практически важные препараты для медицины и сельского хозяйства. [c.124]

    На третьем этапе из выросшей на скошенном агаре культуры делают мазки, окрашивают их по Граму. О чистоте ьсультуры судят по однородности роста, формы, размера и окраски микроорганизмов. Для идентификации выделенной чистой культуры, кроме изучения морфологических, тинкториальных и культуральных особенностей микроорганизмов, необходимо определить их ферментативные и антигенные свойства, фаго- и бактериоцино-чувствительность, токсигенность и другие признаки, характеризующие их видовую специфичность. [c.32]

    Серологическое исследование. Серодиагностика основана на изучении парных сывороток крови. При выборе антигена учитывают эпидемиологическую обстановку и клинические данные. Для выявления нарастания титра антител гемагглютинируюших арбовирусов используют РТГА, для всех остальных арбовирусов — РСК и PH. Трудность диагностики заключается в том, что циркуляция в очаге какого-либо вируса может сопровождаться выработкой групповых антител к антигенно-родственным вирусам. В таких случаях целесообразно применение РСК и PH, которые более специфичны, чем РТГА. Диагностическое значение имеет 4-кратное и более увеличение титра антител в одной из указанных реакций. Следует отметить, что комплементсвязываюш,ие антитела сохраняются непродолжительный период. [c.295]

    Пептидные детерминанты. Поскольку некоторые белки построены целиком из аминокислот и поскольку нет данных о том, что небольшой процент углеводов, иногда присутствующих в белках, каким-либо образом влияет на специфичность последних, мы вынуждены заключить, что специфические антигенные детерминанты белковых антигенов состоят из различных комбинаций аминокислот. Поэтому все, что мы сможем выявить при изучении специфичности пептидов, можно отнести и к нативным белкам. Ландштейнер приготовил л-аминофенилсоединения, содержащие пептиды, построенные из аминокислот глицина (ЫНгСНгСООН) и лейцина (СНзСНзСНСНгСНННаСООН в различных комбинациях (схема X). [c.53]

    До последнего времени все изученные растительные агглютинины можно было разделить на две группы 1) агглютинины, реагирующие с эритроцитами всех людей и поэтому вследствие своей не-специфичности представляющие малый интерес, и 2) агглютинины, реагирующие с одним из уже известных агглютиногенов крови человека. (Несмотря на то что к настоящему времени исследованы тысячи видов растений, лектинов, специфически реагирующих с каким-либо из Rh-антигенов, не обнаружено. В гл. VII будет дано возможное объяснение [c.88]

    Изучение растительных агглютининов обещает пролить свет на вопрос о специфичности антигенов групп крови, а также на природу и число углеводных группировок, находящихся на поверхности эритроцита. Этот вопрос мы обсудим в следующей главе. Применение реакции задержки для изучения лектинов уже позволило в значительной степени выяснить структуру АВН-антигенов. Различие в специфичности между лектинами и агглютининами человека и животных независимо от того, расцениваем ли мы это различие как доказательство большей или меньщей специфичности лектинов, делает последние особенно пригодными для изучения рецепторов эритроцитов при помощи реакции задержки (см. гл. VII). [c.106]

    Гликопротеины группоспецифических веществ крови. Одной из наиболее изученных антигенных систем организма являются эритроциты. Поверхность эритроцитов покрыта веществами, обусловливающими групповую опецифичность. Каждой группе крови присущ вещества вполне определенной структуры. Они являются комплексами полисахаридов, белков и, в ряде случаев, липидов и называются агглютиноге-нами. За групповую специфичность ответственны отдельные участки ге-терополисахаридных цепей. [c.93]

    Ингибирование осаждения или агглютинации послужило критерием для установления олигосахаридных структур, обусловливающих специфичность А-, В-, 0(H)-, Le - и ЬеЬ-антигенов груин крови. Как только из групповых веществ крови выделяют и идентифицируют новые олигосахариды или как только становятся доступными синтетические вещества, их испытывают на ингибирующую способность строение антигенных детерминант выводят затем из структуры наиболее сильного ингибитора. Изучение ингибирования показало, что среди олигосахаридов, выделенных из групповых веществ крови, до сих пор самым эффективным ингибитором системы А-анти-А является трисахарид a-N-ацетил-в-галактоз-аминил-(1 -> 3)-Р-в-галактозил-(1 3)-]М-ацетил-в-глюкозамин [46 [, а системы В-анти-В — дисахарид 0-а-в-галактоииранозил-(1 3)-в-галак-тоза [47]. См. исчерпывающие обзоры, посвященные роли иммунохимии в выяснении структуры групповых веществ крови [26, 48]. [c.436]

    Химическая индивидуальность, или видовая специфичность, белков легко выявляется серологическим путем. Если животному, например кролику, ввести в кровь чужеродный ему белок (антиген), то в организме вырабатываются специфические антитела, являющиеся белками глобулино-ной природы и находящиеся, главным образом, в у-глобулиновой фракции белков сыворотки крови. Антигены и антитела взаимодействуют друг с другом с образованием осадков (преципитата), что можно наблюдать при добавлении к сыворотке крови животного, которому ввели в кровяное русло чужеродный белок ( иммунизированного животного), того же белка (антигена). Образование осадка носит название реакции преципитации . Эта реакция весьма тонкая и позволяет выявить свойства белков, неуловимые при их хими ческом изучении. Так, например, тщательное химическое изучение гемоглобина крови лошади, овцы и собаки не выявляет каких-либо особенностей в их химической структуре. Между тем при введении этих гемоглобинов в кровь кролика образуются специфические для каждого из них антитела. Известны, однако, некоторые белки, почти не вызывающие образования антител. Гормоны белковой природы (инсулин, некоторые гормоны гипофиза и др.), изолированные из желез внутренней секреции крупного рогатого скота, при введении их в кровь человека (а также животных) практически не вызывают образования антител. Надо полагать, что химические различия в структуре белков-гормонов животных и белков-гормонов человека настолько малы, что они не всегда выявляются серологически. Это обстоятельство имеет большое практическое значение, так как оно позволяет широко применять в медицинской практике белки-гормоны без опасения вызвать при повторном введении их в организм человека реакцию преципитации. [c.38]

    В последние годы исследователи возлагают особые надежды на иммунохимические способы идентификации структурных компонентов нейрорецепторов. Высокая специфичность антител и их способность узнавать разные антигенные детерминанты рецепторных комплексов широко используется для выяснения структурной организации нейрорецепторов и процессов их биосинтеза, включая генно-инженерные исследования. Иными словами, поли- и моноклональные антитела являются важным инструментом для изучения механизмов рецептии и общих вопросов нейробиологии. [c.269]


Смотреть страницы где упоминается термин Антигенная специфичность изучения: [c.124]    [c.31]    [c.124]    [c.104]    [c.49]    [c.217]    [c.17]    [c.574]    [c.472]    [c.650]    [c.322]    [c.32]    [c.38]    [c.191]    [c.95]    [c.430]    [c.435]    [c.310]    [c.392]   
Молекулярная иммунология (1985) -- [ c.27 ]




ПОИСК





Смотрите так же термины и статьи:

Антигенность

Антигенность, антигенная специфичность

Антигены



© 2022 chem21.info Реклама на сайте