Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физические характеристики

    Другие физические характеристики смотрите в следующих литературных источниках вязкость глицерина при различных температурах — [140] термическое расширение глицерина и его водных растворов, показатели преломления водных растворов глицерина прн 20 °С — [141] температуры кипения водных растворов глицерина при 760 мм рт. ст. — [142] температуры застывания и плотность водных растворов глицерина — [143] вязкость водных растворов глицерина — [144]. Физические характеристики глицерина приведены также в работе [145]. [c.200]


    Физические характеристики процесса сорбции из жидкой фазы в общем определяются наличием ближнего порядка молекул растворителя вблизи твердой поверхности, что приводит к предварительной ориентации сорбируемых молекул из раствора и соответствующего снижения энтропии образования активированного комплекса реагента с катализатором. Так как предэкспоненциальный множитель в константе скорости гетерогенно-каталитических реакций равен [c.49]

    Определение физических характеристик. Насыпная плотность определяется путем измерения массы экструдатов катализатора в единице объема при нормированном уплотнении. Измерение массы приводится к массе вещества, прокаленного при 550 °С. За результат анализа принимается среднее арифметическое двух параллельных определений, допускаемое расхождение между которыми не должно превышать 2% отн. [c.77]

    Графически зависимость атомных объемов элементов от их атомных весов выражается в виде ряда волн, поднимающихся острыми пиками в точках, соответствующих щелочным металлам (натрию, калию, рубидию и цезию). Каждый спуск и подъем к пику соответствует периоду в таблице элементов. В каждом периоде значения некоторых физических характеристик, помимо атомного объема, также закономерно сначала уменьшаются, а затем возрастают (рис. 15). [c.97]

    Таким образом, переход нефтепродуктов из жидкого состояния в твердое совершается не в одной определенной температурной точке, как это характерно для индивидуальных химических соединений, а в интервале температур. Этот переход всегда сопровождается некоторой промежуточной стадией помутнения, а затем загустевания, при которой нефтепродукт постепенно теряет свою подвижность, застывает. Температура застывания нефтепродукта не является их физической характеристикой, а носит условный характер. Тем не менее значение этой условной величины практически очень велико. Циркуляция масла в системе смазки двигателя, а также подача толлива через топливную систему возможны только в том случае, если нефтепродукт находится в жидком состоянии, при загустевании же он теряет текучесть и не прокачивается. Так же велико значение этого показателя при транспорте нефтепродуктов. При использовании многих нефтепродуктов необходимо изучить их поведение при низких температурах и хотя бы приблизительно знать температуру, при которой нефтепродукт начинает терять свойство текучести и застывает. Методы определения температуры помутнения и застывания приведены в табл. 31. [c.174]


    Получение требуемой величины коэффициента обратного перемешивания прежде всего зависит от геометрических и конструктивных параметров тарелки, гидродинамических условий в реакторе и его размеров, а также физических характеристик потока. Как и для N, обобщенных уравнений, пригодных для инженерных расчетов значений К, в литературе практически нет. Исключением являются прямоточные барботажные реакторы, секционированные ситчатыми тарелками. Для определения в таких реакторах [c.91]

    В табл. 100 даны важнейшие физические характеристики низкомолекулярных нитропарафинов [163]. [c.319]

    В табл. 101 представлены важнейшие физические характеристики четырех нитропарафинов, полученных в промышленном масштабе прямым нитрованием пропана [163]. [c.319]

    В рассматриваемом нами случае обобщенное уравнение Дамкелера (6-49) нельзя непосредственно применять к фазам, так как оно выведено для элемента объема однофазной системы. Необходимо написать уравнение для общего объема элемента процесса и в нем принять во внимание, что физические характеристики вещества (р, Ср, Я, /) и т. д.) действительны только внутри одной определенной части общего объема V,., занимаемой одной фазой. [c.144]

    Физические характеристики отдельных частиц катализатора влияют на кинетику реакций и на гидродинамику потока. Особенно важны такие характеристики, как диаметр частиц, удельная поверхность, пористость и диаметр пор. Эти характеристики связаны с каталитической активностью и для их измерения были разработаны весьма точные методы. В табл. 72 приведены некоторые характеристики типичных катализаторов. [c.307]

    Показатель п в этом уравнении, называемый индексом течения, характеризует степень отклонения течения от ньютоновского. Это достаточно важная физическая характеристика материала, часто используемая при расчетах процессов переработки полимеров. Для эластомеров п составляет несколько десятых и зависит от молекулярной массы, разветвленности цепей, а также от концентрации наполнителя и температуры. [c.52]

    Возможность применить то или иное вещество в качестве катализатора зависит от химических свойств, которыми обладает это вещество. Физические характеристики катализатора определяют его эффективность и практическую пригодность. К этим характеристикам относятся величина поверхности, пористость, диаметр пор, диаметр частиц, структурная прочность, теплоемкость, теплопроводность и стабильность в условиях реакции. [c.303]

    Некоторые физические характеристики твердых катализаторов [c.307]

    НЕКОТОРЫЕ ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТВЕРДЫХ КАТАЛИЗАТОРОВ [c.307]

    Из физических характеристик для выбора материалов в ряде случаев важно знать температурный коэффициент линейного расширения и коэффициент теплопроводности материала. Последний является важной характеристикой при конструировании теилообменной аппаратуры, особенно с оребренными поверхностями. [c.5]

    По своему характеру причинами появления краевых усилий и моментов в оболочках могут быть 1) заделка края оболочек и изменение геометрии конструкции 2) изменение прочностных и физических характеристик конструкционного материала в меридиональном направлении при переходе от одного сечения к дру- [c.41]

    Физические характеристики этих систем очень важны с точки зрения эффективности поверхностно-активных веществ, используемых в качестве моющих средств и эмульгаторов, а также процессов полимеризации, протекающих в эмульсии. [c.335]

    Плотность — важная физическая характеристика, помогающая идентифицировать вещество. Она определяется после измерения двух свойств вещества объема и массы. Выше уже рассматривалась обычная единица объема -миллилитр (мл). Единицей системы СИ, обычно используемой в химии, является грамм (г). Монета достоинством 5 копеек имеет массу около 5 г. Плотность - это масса, заключенная в единице объема. [c.33]

    Композиционная неоднородность, помимо применения различных способов фракционирования в системах, чувствительных к изменению состава [16], может быть исследована с помощью ряда физических методов. Так, для сополимеров, компоненты которых различаются по своим физическим характеристикам (показателю преломления, плотности, спектрам поглощения) были предложены следующие методы измерения интенсивности рассеянного света в растворителях с различным показателем преломления [3] скоростной седиментации с одновременной регистрацией в ультрафиолетовой и видимой областях спектра [31] плотности [27]. [c.29]

    Внешний вид. Рассмотрите и опишите внешний вид каждого элемента, учитывая такие физические характеристики, как цвет, отражательная способность, физическое состояние. [c.122]

    Поскольку переход в стеклообразное состояние связан с фундаментальным изменением характера теплового движения в полимере, то этот переход носит качественный характер, а его температура Тс, называемая температурой стеклования, является важнейшей физической характеристикой полимера. Напротив, общность молекулярного механизма теплового движения в высокоэластическом и вязкотекучем состояниях делает границу между ними чрезвычайно условной Гт оказывается столь чувствительной к молекулярной массе, ММР полимера, а также к условиям деформирования, что не всегда может быть зарегистрирована как особая температура. Следовательно, при температурах, больших Тс, свойства полимера должны рассматриваться в рамках единых представлений о полимере как о своеобразной вязкоупругой жидкости. [c.40]


    Каждое свойство нефтепродукта может быть охарактеризовано количественно либо абсолютным показателем, либо относительным. Многие физические характеристики нефтепродукта определяются в абсолютных показателях. При относительной оценке сопоставляют значение некоторого показателя качества нефтепродукта с показателем эталона. Так, октановое число бензина является относительной оценкой его детонационной стойкости (за эталоны приняты изооктан и гептан). [c.12]

    В упрощенной одномерной модели атома положение электрона относительно ядра определяется одной координатой, а его состояние — значением одного квантового числа. В двумерной (плоской) модели атома положение электрона определяется двумя координатами в соответствии с этим, его состояние характеризуется значениями двух квантовых чисел. Аналогично в трехмерной (объемной) модели атома состояние электрона определяется значениям трех квантовых чисел. Наконец, изучение свойств электронов, входящих в состав реальных атомоа, показало, что электрон обладает еще одной квантованной физической характеристикой (там называемый спин, см. 30), не связанной с пространственным положением электрона. Таким образом, для полного описания состояния электрона в реальном атоме необходимо указать значения четырех квантовых чисел. [c.75]

    В общем случае интегрирование осуществимо лишь для системы всех уравнений балансов. В частных случаях из математического описания процесса можно исключить некоторые уравнения балансов. Возможные ситуации представлен . в табл. 111-1. В этой таблице физико-химические процессы сгруппированы по физическим характеристикам, без учета их механизма или конструктивного оформления такая группировка удобна для рассмотрения видов уравнений балансов. [c.80]

    Схематически сущность метода поясняет рис. 3.1. Метод не связан с какой-либо конкретной физической характеристикой раствора, поэтому с его помощью можно сравнивать данные, полученные разными физическими методами. Одним из факторов, ограничивающих применимость метода, является возможность взаимодействия между атомными группами не только посредством перекрывания гидратных оболочек, но и посредством смещения электронной плотности ковалентного остова молекулы, вследствие чего может изменяться характер взаимодействия исследуемых групп с водой. Однако даже в тех случаях, когда таким взаимодействием пренебречь нельзя, метод молекулярного щупа дает информацию о верхней границе размеров гидратной оболочки. [c.47]

    Параметрами состояния называются физические величины, характеризующие макроскопические свойства среды,— плотность, давление, температуру, объем. Они, как правило, связаны уравнением состояния (например, для идеального газа, это уравнение (1.21)), потому для определения макроскопического состояния достаточно задавать не все параметры состояния, а лишь некоторые из них. Функциями состояния называются такие физические характеристики, изменение которых нри переходе системы из одного состояния в другое зависит лишь от параметров состояния (начального и конечного), а не от пути перехода (т. е. особенностей кинетики процесса). Функции состояния, посредством котбрых (или их производных) могут быть в явном виде выражены термодинамические свойства системы, называются характеристическими. Важнейшими из них являются внутренняя энергия и, энтальпия Н, энтропия 8, равновесная свободная энергия (или потенциал) Гиббса О, равновесная свободная энергия (или потенциал) Гельмгольца Р. Если же значение функции за- [c.22]

    Обобщенная модель связи геометрии пористой среды с полями физических характеристик в ней строится на основе стохастического подхода и упомянутого принципа дополнительности, согласно которому пористое тело т представляется в виде [35, 36]. [c.138]

    Физические характеристики растворов, входящие в кри терии подобия, находят при средней температуре потока, равной [c.91]

    Для того, чтобы от общего математического описания группы однотипных процессов (например, сорбции) перейти к конкретному описанию одного процесса (например, сорбции пропана цеолитом в аппарате определенных размеров), исходная система дифференциальных уравнений должна быть дополнена начальными и краевыми условиями (т. е. условиями поведения функции в начале или в конце процесса и на геометрических границах аппарата) и физическими характеристиками обрабатываемых веществ. Эти дополнения называют условиями однозначности. [c.134]

    Разработка математического описания платформинга представляет большой интерес для целей оптимального проектирования и управления процессом. Существенно отметить, что статистические описания [1, 2] не могут быть эффективно использованы для решения задач проектирования. Однако статистические методы могут быть полезны при переходе от рассчитываемых на основании дифференцированного описания физических характеристик (состав продукта) к техническим (октановое число) [2]. [c.336]

    Теория подобия используется для обобщения данных о каком-либо физическом процессе при осуществлении его в аппаратах различного размера. Методы теории подобия применяют для определения физических характеристик процесса в большом аппарате на основе изучения этого процесса в малом аппарате. При этом принимается, что процесс описывается одной и той же системой дифференциальных уравнений, т. е. что структура математического описания неизменна. Предполагается, что аналитическое пли численное решение этого описания вызывает затруднения. [c.20]

    Плотность — важнейшая физическая характеристика топлива. Она определяется отношением массы топлива к занимаемому объему. Плотность реактивных топлив измеряется при помощи пикнометра, весов Фестваля, а также нефтеденсиметра. В ГОСТ на реактивные топлива регламентируется минимально допустимое значение плотности при температуре 20°С. [c.33]

    Каково назначение установки и пропумероваппых ее частей (рис. 18.9) Нанпсать уравнения реакций, проходящих в аппаратах J, 5, 7, н назвать оптимальные условия 1Х протекания. Какие продукты выходит нз аппарата 7 и куда они направляются Стрелками показать направление движения сырья, полупродуктов, указать их физические характеристики. Какова температура в аппарате / и за счет чего она достигается  [c.270]

    Величина поверхностного натяжения имеет решающее значение для смачиваемости поверхности и для характера образующихся пузырьков. Если жидкость обладает большой склонностью к смачиванию поверхности нагрева, то пузырьки пара теснятся а поверхности нагрева и легко от нее отрываются наоборот, если жидкость не проявляет склонности к смачиванию поверхности, то пузырек пара растягивается по поверхности и отрывается от нее только при значительном увеличении в объеме. Пузырьки пара в этом случае затрудняют переход тепла от поверхности нагрева к жидкости, так как тепловое сопротивление пара велико. Например, коэффициент теплоотдачи ртути, согласно данным Стырико-вича и Семеновкера, в 10—20 раз меньше, чем воды, при одинаковых тепловой.нагрузке и давлении. Это различие, конечно, обусловлено также и различием физических характеристик этих жидкостей. [c.126]

    Физические параметры. К этому классу относятся параметры, описывающие физические характеристики потоков веществ моделируемого объекта. Среди указанных параметров можно выде. пггь следующие группы  [c.45]

    Важнейшими показателями, характеризующими испаряемость топлив, являются давление насыщенных паров и фракционный состав. В связи с тем что процессы испарения, как правило, сопровождаются тепломассообменом, испаряемость зависит и от таких теплофизических и физических характеристик, как энтальпия, теплоемкость, теплопроводность, теплота парообразования, коэффициент диффузии, вязкость, поверхностное натяжение, фуггитивность. [c.99]

    В свое время были предприняты многочисленные, не увенчавшиеся успехом попытки связать горючие свойства керосина с его физическими характеристиками. Результаты этих исследований были рассмотрены Кунертом (Kunerth [22]) и Стюартом (Stewart [23]). [c.465]

    Как видно из этого выражения, вклад термокристаллизационного течения пленок растет при уменьшении радиуса капилляров. Подстановка в уравнение (6.12) известных физических характеристик воды (/г 10 см, т1г 0,01 Па-с и ГдаГо) показывает, что отношение У /Уз Х при г 10 мкм. Это определяет весьма важную роль термокристаллизационного течения пленок воды в промерзших тонкопористых телах. При среднем радиусе пор г<с10 мкм основная роль в процессе внутреннего массообмена в промерзших пористых телах вблизи фронта кристаллизации принадлежит термокристаллизационному течению пленок. Напротив, в широкопористых телах (г>10 мкм) перенос влаги происходит в основном в виде пара. Влияние термокапиллярного течения пленок, как показывают оценки [328, 329], не превышает 2% от вклада термокристаллизационного течения (при /гл 10 см), но может возрастать до 20% при уменьшении толшины пленок до 10 см. [c.112]

    Но почему энергия не зависит от I Не связано ли это с наличием некоторой симметрии, отрахоющей более глубокие и потому менее очевидные физические характеристики, чем пространственные  [c.82]

    В этой формуле A = — ст 1- Удельную теплоту конденсации г определяют при температуре конденсации конд физические характеристики конденсата рассчитывают при средней температуре пленки конденсата пл = 0.5 ( конд + стх)- Во многих случаях, когда не превышает 30—40 град, физические характеристики могут быть определены при температуре конденсации 4оид> что не приведет к значительной ошибке в определении а. [c.23]

    В формулах (П.27)—(II.29) все физические характеристики жидкости, а также плотность пара при атмосферном давлении Рпо = 273М/22,4Т ип и при давлении над поверхностью жидкости рд = = Рпор/ратм следует определять при температуре кипения Гкип (в К). [c.23]

    При изучении кпнетпки адсорбции из растворов как одной из стадий каталитических реакций представляют интерес два вопроса 1) взаимосвязь величины поверхностной концеитрацпи растворенных веществ с их объемной концентрацией п 2) определение физических характеристик сорбционного состояния молекулы на поверхности при наличии жидкой фазы в объеме. [c.48]

    Теория подобия используется для обобщения данных о каком-либо физическол процессе при осуществлении его в аппаратах различного размера. Методы теории подобия применяют для определения физических характеристик процесса в большом аппарате на основе изучения этого процесса в малом аппарате. При этом принимается, что процесс описывается одной и той же системой дифференциальных уравнений, т. е. что структура математического описания неизменна. Предполагается, что аналитическое или численное решение этого описания вызывает затруднения применение же теории подобия позволяет выполнить исследование процесса, не прибегая к решению системы дифференциальных уравнений. [c.134]


Смотреть страницы где упоминается термин Физические характеристики: [c.312]    [c.46]    [c.32]    [c.120]   
Смотреть главы в:

Химия кремнезема Ч.1 -> Физические характеристики

Массопектрометрический метод определения следов  -> Физические характеристики

Химия высокомолекулярных соединений -> Физические характеристики

Электролитическое и химическое полирование -> Физические характеристики

Электролитическое и химическое полирование -> Физические характеристики

Электролитическое и химическое полирование -> Физические характеристики

Электролитическое и химическое полирование -> Физические характеристики




ПОИСК







© 2025 chem21.info Реклама на сайте