Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оборудование механическая прочность

    Поэтому для безопасной эксплуатации оборудования в химической промышленности важное значение имеют механическая прочность применяемых материалов, их жаропрочность VI химическая стойкость. Эти характеристики конструкционных материалов, применяемых в химической промышленности, предстоит далее рассмотреть. [c.164]

    В процессе эксплуатации машин и аппаратов происходит потеря их работоспособности главным образом из-за разрушения отдельных деталей или их поверхностных слоев за счет механического износа и коррозионного износа, зависящего от среды, в которой работает оборудование. В результате этого оборудование теряет прочность, точность, уменьшается, его мощность и производительность. Восстановление этих важнейших показателей осуществляется путем ремонта. [c.54]


    МЕХАНИЧЕСКАЯ ПРОЧНОСТЬ ОБОРУДОВАНИЯ [c.271]

    При типичном очаге пожара с горением над зеркалом нефтепродукта в резервуаре открытый огонь создает интенсивное тепловое излучение в окружающее пространство. Это излучение ограничивает свободу передвижения и затрудняет действие людей, но не создает непосредственной угрозы для их жизни, так как опасное воздействие излучения проявляется постепенно, а люди все-таки могут более или менее произвольно выбирать свое расположение. Однако под воздействием теплового излучения возможен сильный перегрев оборудования с деформацией и потерей механической прочности. [c.38]

    Исходя из условий, в которых работает различное оборудование нефтеперерабатывающих заводов, к конструкционным материалам, применяемым для его изготовления, могут предъявляться следующие основные требования высокая механическая прочность, высокая коррозионная стойкость, жаростойкость, жаропрочность, стойкость к высоким и низким температурам, знакопеременным нагрузкам и др. [c.17]

    Первостепенное требование, которому должны удовлетворять химические машины и аппараты,— это обеспечение наиболее высоких технологических параметров,, что достигается способами, кратко описанными во введении. Наряду с технологическим совершенством химическое оборудование должно удовлетворять ряду требований механической прочности. Следует отметить, что конструкция аппарата или машины существенно зависит от параметров процесса (давления и температуры), коррозионных свойств среды, наличия осадков и отложений, свойств конструкционных материалов и др. [c.8]

    При проектировании оборудования применительно к условиям эксплуатации выбирают конструкцию оптимальных форм и размеров, требуемой механической прочности и герметичности, выполненную по возможности из стандартизованных и унифицированных узлов и деталей. Важное значение имеет правильный выбор конструкционных материалов с учетом общих и специальных условий эксплуатации оборудования давления, температуры, агрессивного воздействия среды и др. Необходимо упрощать кинематические схемы, уменьшать действующие в машинах динамические нагрузки, применять средства защиты от перегрузок и т. д. Особое внимание уделяют равнопрочности деталей (в одном узле машины), подвергающихся частым поломкам, износостойкости деталей и узлов конструкции. [c.50]

    Наиболее важным этапом создания процесса является разработка катализаторов, которые должны отвечать как общим требованиям, предъявляемым катализаторам - высокая активность, стабильность, механическая прочность и термическая устойчивость и т.д., так и обладать специфическими свойствами, а именно, селективно превращать сероводород в элементную серу без образования сернистого ангидрида и других побочных продуктов быть инертным по отношению к углеводородам и не отравляться ими. Рядом зарубежных фирм, а также отечественными специалистами разработаны катализаторы, прошедшие опытные и промышленные испытания. К ним относятся оксидные катализаторы на основе дешевого и доступного сырья, технология изготовления их простая и не требует дорогостоящего оборудования. Высокая активность и стабильность катализатора позволяет вести процесс при времени контакта в 4-5 раз меньше, чем по традиционной технологии Клауса, обеспечивая за счет этого резкое уменьшение металлоемкости и габаритов установок. [c.172]


    В условиях работы химического оборудования к теплоизоляционным покрытиям предъявляют повышенные требования. Такие теплоизоляционные материалы, как шлаковата, стекловата, асбоцемент, зачастую не обеспечивают требуемого качества изоляционного покрытия, так как имеют низкую механическую прочность и высокую способность к влагопоглошению, а при эксплуатации в условиях воздействия агрессивных химических сред и атмосферной влаги сравнительно быстро разрушаются. [c.73]

    Однако прессование литых смесей связано с применением пресс-форм сложной конструкции с фильтрующими стенками и поддоном, обладающих необходимыми фильтрационными характеристиками. Помимо требуемых характеристик фильтрующего материала необходимо обеспечить многократность его использования и достаточно высокую механическую прочность. При повышенном содержании воды в формовочных смесях увеличивается время прессования и снижается производительность формовочного оборудования. В процессе производства прессованных гипсовых изделий появляются отходы — мельчайшие частички гипса, удаляемые вместе с фильтровальной водой, и фильтровальный материал [71, 75]. [c.39]

    В производстве цианамида кальция и цианплава большое значение для повыщения надежности работы оборудования имеет его механическая прочность и термическая стойкость, а также предохранительные приспособления, защищающие оборудование от разрушения при превыщении допустимого давления и взрывах. В соответствии с требованиями к прочности и термической стойкости оборудования необходимо соблюдать следующие условия  [c.75]

    Конструкционные параметры ограничены требованиями ГОСТ, межведомственных и ведомственных нормалей на типы и геометрические размеры оборудования, а также соображениями механической прочности и надежности оборудования. Ряд ограничений имеется также на информационные взаимодействия элементов или подсистем. [c.65]

    На установках замедленного коксования при гидравлическом извлечении кокс получается разной крупности, что определяется, помимо механической прочности кокса, диаметром нижнего люка камеры. Исходя из этого, максимальная крупность кокса лежит в пределах 1200-1600 мм. Однако таких кусков образуется не более 1-2% на выгружаемый кокс. Конечная максимальная крупность - 250 мм - определяется условиями транспортирования железнодорожными вагонами и дробильным оборудованием установок прокаливания кокса. После дробления объем мелких фракций возрастает на 6-22%. Больше всего кокс измельчается при транспортировании скребковыми конвейерами (СР-70 и СК). [c.202]

    Поскольку большинство процессов получения мономеров, а также их выделение и очистка осуществляются при высоких давлениях и температурах под воздействием агрессивных сред, для предупреждения аварий при эксплуатации оборудования особое внимание должно уделяться его механической прочности, жаропрочности и коррозионной стойкости. Для изготовления нефтехимического оборудования и аппаратов применяются высоколегированные (жаропрочные, жаростойкие, нержавеющие и кислотостойкие) стали. Если применение легированных сталей оказывается недостаточным, то используют другие коррозионностойкие материалы, [c.249]

    Учитывая возможные нагрузки, их особенности, принимая во внимание условия внешней среды, механические свойства, жаропрочность, химическую стойкость материалов и многие другие требования надежности и безопасности, конструкторы проводят расчет проектируемых аппаратов и оборудования на прочность. Здесь может быть два направления таких расчетов. [c.169]

    Для безопасной эксплуатации нефтеперерабатывающего оборудования важное значение имеет его механическая прочность. [c.271]

    Наиболее частыми причинами аварий с сосудами, работающими ПС Д давлением, являются нарушение механической прочности частей аппаратов (коррозия, местные перегревы и др.), превышение давления сверх допустимого, несоблюдение режима, плохая организация обслуживания оборудования. Значительно >еже аварии вызываются недостатками в конструкции сосудов. [c.299]

    Катализатор № 1 при высокой механической прочности обладает низкой пористостью и, вследствие этого, низкими эксплуатационными свойствами (большое время контакта технологических газов с катализатором - 8-10 сек., что ведет к увеличению размеров реакционного оборудования). [c.67]

    Приведенные данные показывают, что содержание платины во всех образцах практически постоянно. Однако количество кокса постоянно увеличивается как при регенерации, так и по мере прохождения газосырьевого потока. Серы и железа больше всего содержится в пробах, отобранных сверху первого реактора второго цикла восстановительной регенерации, что объясняется коррозией оборудования. Наибольшее количество кокса отложилось на катализаторе в двух параллельно работающих реакторах III ступени риформинга. Разное содержание кокса на катализаторе в указанных реакторах следует объяснить различной скоростью движения в них парогазовых потоков. В большинстве случаев коэффициент механической прочности понижается на 15—20% (отн.) в результате действия гидравлического сопротивления. Наиболее верным средством для его снижения является радиальный ввод газосырьевой смеси в реактор, оправдавший себя на других НПЗ. Положительные результаты восстановительной регенерации получены и на установке Л-35-6, которая проработала 14 месяцев с проведением только восстановительной регенерации. [c.158]


    Понижение механических свойств при высоких температурах обусловлено происходящими в металле структурными и фазовыми превращениями. К структурным изменениям такого рода можно отнести явление графитизации углеродистой и молибденовой сталей, образование ферритной фазы в хромоникелевых сталях и др., присущие последним при длительной работе металла в условиях высокой температуры. В ряде случаев стабильность структуры стали в течение длительного срока службы оборудования удается обеспечить путем термической обработки стали. В большинстве случаев для аппаратуры, предназначенной для работы при высоких температурах, применяются специальные марки жаропрочных сталей, характеризуемых достаточной механической прочностью и стабильностью структуры при высоких температурах. Наряду с жаропрочностью эти металлы должны обладать жаростойкостью, т. е. способностью противостоять коррозионному воздействию среды в условиях длительной работы материала при высоких температурах. При непрерывном процессе окалинообразования рабочее сечение металла уменьшается, что приводит к повышению рабочего напряжения и ухудшению условий безопасной эксплуатации оборудования. [c.10]

    Сейчас при контроле механических свойств материалов для испытаний на растяжение, сжатие, изгиб, скручивание, длительную прочность, ползучесть, релаксацию напряжений применяют громоздкое и дорогое механическое оборудование. Пределы прочности, текучести, упругости, относительного удлинения, ударной вязкости определяют на образцах выборочным путем. Но даже у материалов одной марки, плавки, партии механические характеристики могут разниться. Выход подсказывает применение магнитных коэрцитиметров, позволяющих оценивать качество термообработки, твердость и другие механические параметры через коэрцитивную силу ферромагнитного материала. Так проверяется качество углеродистых сталей и других содержащих железо сплавов после термообработки. [c.60]

    Метод диаметрального сжатия применим для испытания при определении предела механической прочности на разрыв для материала углеграфитовой продукции. Метод отличается простотой проведения исследования, хорошей сходимостью полученных результатов и не требует сложного испытательного оборудования. [c.60]

    По сравнению с первым изданием в данной книге существенно расширен экспериментальный материал и дополнен главой, содержащей сведения о коррозионно-механической прочности трубопроводов и оборудования (в частности, оборудования нефтяной промышленности). Более детально и с прикладным уклоном проведены расчеты прочности и долговечности напряженных металлических конструкций и трубопроводов в условиях механохимической коррозии. Приведены результаты новых экспериментальных наблюдений за пластифицирующим действием хемомеханического эффекта и уточнены представления о его природе. Изложены основы и указаны пути применения механохимической обработки поверхности стали. [c.3]

    Открытый огонь является наиболее сильным поражающим фактором как для материальных ценностей, так и для людей. Гибель людей может наступить даже при кратковременном воздействии открытого огня в результате сгорания, ожогов или сильного перегрева. Характер и последствия воздействия открытого огня на материальные ценности зависят от их горючести. Нефти выгорают полностью или частично. Несгораемые конструкции могут быть уничтожены огнем в результате расплавления, деформации или обрушения при перегреве и потере расчетной механической прочности. В отличие от устойчивого длительного горения над зеркалом жидкости, быстрое сгорание паровоздушной смеси, образовавшейся на территории резервуарного парка при выбросе нефтяных паров из дышащих резервуаров в атмосферу, не может привести к уничтожению технологического оборудования и других сооружений, но кратковременное воздействие такого огня может стать причиной гибели человека. [c.38]

    Более длительной работе никеля на кизельгуре препятствует малая механическая прочность кизельгура вследствие его химического взаимодействия с водой при высоких температурах и высоких pH среды. Поэтому представляют интерес работы по применению для гидрогеиолиза катализаторов на носителях, устойчивых к воздействию реакционной среды, — на окиси алюминия алюминатах кальция [47], а также сплавных порошкообразных медно-алюминиевых катализаторов [42]. Такие катализаторьг должны быть, очевидно, стабильнее никеля на кизельгуре их активность и селективность в процессе гидрогеиолиза углеводов может значительно отличаться от соответствующих свойств никеля на кизельгуре, так как применение окиси алюминия в качестве носителя значительно увеличивает прочность связи водорода с поверхностью [48]. Следует, однако, заметить, что большая твердость никелевого катализатора на окиси алюминия по сравнению-с никелем на кизельгуре может вызвать значительную эрозию оборудования, трубопроводов и арматуры, а повышенная плотность этих катализаторов затрудняет их использование в суспендированном виде необходимы работы по усовершенствованию таких катализаторов. [c.121]

    Оборудование, характеризующееся низкой механической прочностью. Аппаратура и трубопроводы из стекла, керамики и других хрупких материалов должны быть защищены от механического воздействия и разрушения, исключать возможность случайных ударов и неосторожного обращения в момент эксплуатации. [c.222]

    Оборудование и трубопроводы сероводородсодержащих месторождений испытывают механические нагрузки, которые, как правило, не превышают 0,5оо 2. то есть ресурс коррозионно-механической прочности металла не реализуется почти наполовину. Принимая во внимание этот факт, а также данные анализа отказов и изменения свойств бездефектного металла трубопроводов, представляется нецелесообразной эксплуатация оборудования в случае уменьшения более чем в два раза сопротивляемости металла сероводородному растрескиванию. В соответствии с этим шкалу времени предварительной выдержки образцов в среде NA E совмещают со шкалой планируемого срока эксплуатации трубопровода (рис. 34). [c.124]

    Таким образом, при существующих параметрах регенерации (Р=7,0-7,5 МПа 1=180-200°С) не обеспечивается десорбция наиболее высококипящей части тяжелых углеводородов и происходит их постепенное накапливание в активном слое адсорбента. Для более полной десорбции поглощенных углеводородов необходимо повышение температуры регенерации до 300-350°С. Однако возможности повышения температуры ограничены техническими характеристиками печей газа регенерации и механической прочностью самого адсорбционного оборудования. Кроме того, это мероприятие представляется нерациональным как из-за возможного разрушения гранул силикагеля, так и повышения эксплуатационных затрат. [c.49]

    Достоинством этого метода очистки гелия от водорода является то, что степень очистки не зависит от колебаний концентрации водорода в сырье, недостатком - периодичность процесса. Периодичность увеличивает количество оборудования, усложняет эксплуатацию, увеличивает потери гелия. Недостатками также являются низкая механическая прочность катализатора, что обусловливает его частую замену. [c.216]

    В вышеприведенном описании слово инертный означает, что образец или используемые растворители не приводят к порче оборудования, его ослаблению, коррозии или аварии, а также к загрязнению образца или потока элюента. Разумеется инертными должны быть только те материалы и детали оборудования, которые контактируют с жидкой фазой или образцом. Может оказаться невозможным или даже нежелательным создать жидкостный тракт из материалов, устойчивых ко всем возможным образцам или подвижным фазам, из-за необходимости поддерживать на должном уровне другие важные характеристики, такие, как устойчивость к давлению, легкость в обработке и изготовлении, механическая прочность и подходящая стоимость. Наиример, пластиковые насосы могут работать хорошо в контакте с биологическими образцами п водными буферами, но заедают в результате набухания, изменения размеров или химических изменений, обусловленных органическими растворителями. [c.113]

    Испытания на сжатие и разрыв широко применяются в технике для характеристики механической прочности твердых кусковых тел. Испытанию подвергают кубики размерами 50Х50Х Х50 мм или 40X40X40 мм по общепринятой методике на прессах, оборудованных прибором (мультипликатором) для замера величины приложенного усилия (давления), и самопишущим прибором для записи величины деформации по высоте испытуемого образца. [c.168]

    Таким образом, использование пульвербакелита для производства пенопластов способствует сокращению парка оборудования для приготовления композиций и уменьшению при этом затрат и времени. Как показали исследования, механическая прочность у пенопластов, полученных методом непрерывного формования из композиций на основе пульвербакелита, выше, чем у пенопластов, полученных из традиционных промышленных композиций. По физико-механическим свойствам пенопласт на основе пульвербакелита, полученный методом непрерывного формования, даже превосходит пенопласты аналогичного типа, полученные периодическим способом (см. табл. 10). Разработана композиция на основе полимера, синтезированного из фенола, формалина и кубовых остатков фенолаце-тонового производства [111]. Присутствие в полимере других высокомолекулярных соединений и олигомеров способствует ускорению отверждения в присутствии уротропина. [c.48]

    К конструкционному материалу для нефтегазодобывающего оборудования предъявляется широкий комплекс требований наряду с механической прочностью необходимы малая масса, высокая стойкость против коррозии, особенно против специфических видов коррозионного разрушения, стабильность свойств при перепадах температур, стойкость против парафиноотложения и др. Получить материал с оптимальным сочетанием свойств не всегда возможно. Поэтому весьма перспективно нанесение покрытий на стальную основу. При этом достигается экономия дефицитных и дорогостоящих материалов и возможность использования свойств обоих компонентов — высокой защитной способности покрытия и механических свойств основы. Для плакирующего слоя или покрытия могут быть использованы. высоколегированные стали или дефицитные и дорогостояшле металлы (титан, никель и др.), имеющие повышенную коррозионную стойкость. Ввиду того, что толщина плакирующего слоя или защитного покрытия [c.73]

    Исходя из условий, в которых работает различное оборудование нефтехимических и нефтеперерабатывающих производств, к конструмш-онным материалам, применяемым для его изготовления, могут быть предъявлены следующие основные требования высокая механическая прочность, высокая коррозионная стойкость, жаростойкость, жаропрочность, стойкость к высоким и низким температурам, знакопеременным нагрузкам и др, [8, П]. Аппаратуру для нефтеперерабатьшающих заводов из- [c.10]

    Необходимость длительной и безотказной работы различных деталей и изделий в контакте с агрессивной средой предъявляет высокие требования к коррозионной стойкости и долговечности материалов, из которых они изготовлены. В качестве коррозионностойких сталей во многих отраслях промышленности находят применение хромистые и хромоникелевые стали, содержащие не менее 12...13 % хрома. Однако эти стали во многих случаях могут быть подвержены одному из наиболее опасных видов коррозионного поражения - меж -фисталлитной коррозии (МКК), нередко являющейся причиной отказов оборудования и возникновения аварийных ситуаций. Межкристаллитная коррозия локализуется по границам зерен без видимых вооруженным глазом изменений внешнего вида, формы и размеров изделий. Сцепление между зер. ослабевает как в поверхностном слое, так и по всему сечению изделия, что может привести к практически полной потере функциональной способности изделия и механической прочности. [c.83]

    Ситаллы и шлакоситаллы — стеклокрнсталлические химически стойкие конструкционные материалы, обладающие высокой термостойкостью, устойчивостью к резкому перепаду температур, высокой механической прочностью и износостойкостью. Технические ситаллы применяют для изготовления химического оборудования, приборов, труб и арматуры, сосудов, работающих под давлением. Из шлакоситаллов выпускают трубы и футеровочные плитки размерами от 100X100 до 250X350 мм, толщиной от 8 до 25 мм. Ситаллы отличаются высокой стойкостью во всех минеральных кислотах при температуре до 300 °С, в том числе в смеси азотной и серной кислоп [c.343]

    Нефтяная и газовая промышленность являются крупнейшими потребителями труб. С развитием, этих отраслей растет и потребность в трубах. При этом повышаются требования к материалу труб. Разработка нефтяных и газовых месторождений с большим содержанием сернистых соединений повышает требования к химической стойкости материала. Увеличение глубин бурения до 5—6 км и в перспективе бурение еще более глубоких скважин требует повышения механической прочности материала. При этом увеличение веса бурильных, обсадных и насосно-компрессорных колонн крайне нежелательно, так как влечет за собой увеличение мощности и веса бурового и эксплуатационного оборудования, снилоя его транспортабельность, монтажеспособность и повышая энергоемкость. [c.311]

    Универсальное стеюю-кристалли-ческое 1 Для химического оборудования, эксплуатируемого в кислых, щелочных и нейтральных средах при температуре и давлении, указанных в табл. 52.4. Покрытие допускает повышенный по сравнению со стеклоэмалевым покрытием перепад температур и обладает более высокой механической прочностью [c.929]

    Конструкция оборудования, работающего в коррозионной среде, должна предусматривать возможность защиты от локальных видов коррозии, таких как контактная, щелевая, язвенная, струевая. Выбираемые материалы не должны быть подвержены селективно-избирательным видам коррозии (коррозионное растрескивание, питтинговая и язвенная коррозия, межкристаллитная коррозия). Назначение уровня действующих нагрузок должно производиться с учетом допустимых пределов по коррозионно-механической прочности материалов. [c.80]

    Отечественные приборы, как правило, изготавливают из нержавеющей стали Х18Н9Т. Основным конструкционным материалом для импортного оборудования является нержавеющая сталь марки 316, отличающаяся высокой коррозионной стойкостью и механической прочностью. Как правило, нержавеющие стали достаточно коррозионноустойчивы к обычно используемым в ВЭЖХ растворителям [126]. Исключение составляют некоторые сильные органические кислоты (муравьиная, щавелевая, трихлоруксусная, трифторуксусная и др.) в определенном диапазоне концентраций, хлорсодержащие растворители (метиленхлорид, хлороформ, тетрахлорид углерода и др.), особенно в сочетании с полярными модификаторами типа спиртов. Когда возникает необходимость в использовании таких растворителей или модификаторов. [c.165]

    Полипропилен отличается от полиэтилена значительно большей механической прочностью и жесткостью, что позволяет применять его для изготовления труб для транспортировки агрессивных жидкостей, арматуры, центробежных <насосов, деталей химической аппаратуры, а также в качестве обЛедовочного материала противокоррозионного и декоративного назначения. Химическая стойкость полипропилена близка к химической стойкости полиэтилена. Пленки из полипропилена отличаются прозрачностью, паро- и газонепроницаемостью. Благодаря высоким электроизоляционным свойствам полипропилен применяется для изготовления деталей электро-, и радио- и телевизионного оборудования. [c.85]


Смотреть страницы где упоминается термин Оборудование механическая прочность: [c.192]    [c.273]    [c.54]    [c.15]    [c.281]    [c.36]    [c.36]    [c.15]    [c.127]   
Охрана труда в химической промышленности (0) -- [ c.348 ]




ПОИСК





Смотрите так же термины и статьи:

Механическая прочность

Механическое оборудование



© 2025 chem21.info Реклама на сайте