Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газовые хроматографы непрерывного потока

    Анализируемую газовую смесь пропускают через колонку с адсорбентом или носителем неподвижной жидкости в непрерывном потоке воздуха при одновременном нагреве хроматографической колонки. Нагрев колонки дает возможность полнее и быстрее разделять компоненты вследствие изменения их адсорбционной способности. В зависимости от состава смеси для хроматографической колонки применяют различные адсорбенты или носители с различными неподвижными жидкими фазами. Так, для разделения смеси предельных углеводородов используют газо-адсорбционную хроматографию в качестве адсорбента применяют, например, крупнопористый силикагель МСК или КСК, а для разделения смесей, содержащих также и непредельные углеводороды, — окись алюминия. Однако на указанных адсорбентах не удается выделить некоторые изомерные компоненты. В этом случае применяют комбинацию газо-адсорбционной и газожидкостной хроматографии, а именно разделительную колонку наполняют адсорбентом, смоченным небольшим количеством малолетучей жидкости. Такие адсорбенты называются модифицированными. Сочетание газо-адсорбционной и газо-жидкостной хроматографии позволяет полнее разделить сложную смесь, состоящую из большого Числа разных по своей природе компонентов. [c.144]


    Аппаратура, Принципиальная схема газового хроматографа представлена на рис. 3.3. Подвижная фаза (газ-носитель) непрерывно подается из баллона 1 через редуктор 2 в хроматографическую установку. Анализируемую пробу вводят дозатором 4 либо в поток газа-носителя, либо через резиновую мембрану в испаритель 3. Из испарителя проба переносится газовым потоком в хроматографическую колонку 5. Изменение состава выходящей из колонки смеси фиксируется детектором 7 и записывается на ленте регистратора 9. Хроматографическая колонка и детектор помещены в термостаты 5 и 5. Дозатор предназначен для введения точного количества образца пробы в хроматограф. В качестве дозатора используют специальное дозирующее устройство или микрошприц. Объем вводимой пробы 0,1 мкл — 0,1 мл для жидких и 0,5—20 мл для газообразных проб. [c.192]

    Принципиальная схема газового хроматографа в самом общем виде представлена на рис. 15. Газ-носитель непрерывно продувает все части газовой схемы. Пробу анализируемого газа (если исследуемый образец — жидкость, то его с помощью специального испарительного устройства хроматографа переводят в парообразное состояние) вводят в поток с помощью устройства 2. Газ-носитель продвигает внесенную смесь через колонку 3 и детектор 4. Колонка — один нз основных частей прибора, поскольку в процессе движения в ней анализируемая смесь газов разделяется на компоненты. Разделенные компоненты образца, выходя из колонки, поступают в детектор, который обнаруживает их и выдает сигналы, обычно записываемые иа ленте регистратора 5. [c.61]

    Распределение концентрации на выходе из хроматографической колонки необходимо зафиксировать. Для этой цели в газовой хроматографии служат специальные з стройства, называемые детекторами. Детектор помещается на пути потока газа непосредственно по выходе из колонки. Функция детектора сводится к непрерывной фиксации зависимости концентрации или другого параметра на выходе из колонки от времени. Результаты записи, а следовательно, и результаты всего опыта в значительной степени зависят от правильного выбора типа детектора, его конструкции. Принятая классификация детекторов позволяет правильно установить возможности и назначение каждого из них. [c.37]

    Детекторы. Одним из основных узлов газового хроматографа является детектор. Детектор служит для непрерывной фиксации зависимости концентрации или другого параметра на выходе из колонки от времени. Если фиксируется концентрация вещества, детектор называют концентрационным, если произведение концентрации на скорость потока — потоковым. Любой детектор характеризуется чувствительностью и линейной связью измеряемой величины с возникающим сигналом. Условия анализа должны обеспечивать работу детектора в диапазоне с линейной зависимостью сигнала от измеряемого параметра. [c.618]


    Существуют две основные принципиально различные схемы хроматографического анализа. Первая, которой в наибольшей степени соответствует термин элюентная, соответствует случаю, когда после хроматографического разделения по элюентной схеме последующее определение разделенных веществ осуществляется в потоке элюата, выходящего из колонки. Чтобы не вносить дополнительной терминологической путаницы, эта схема хроматографического анализа в дальнейшем будет рассматриваться как традиционная. Вторая схема — хроматографическое разделение с определением разделенных веществ непосредственно в хроматографической колонке или в плоском слое. Наибольшее распространение нашла первая схема, причем на начальном этапе развития хроматографии стадии разделения и послед)тощего определения веществ были разнесены во времени и в пространстве. Для определения каждого из выделенных компонентов мог применяться свой метод определения в отдельных фракциях элюата, но при этом хроматографический анализ был лишен своих основных достоинств — универсальности и экспрессности. Качественным скачком в развитии аналитической хроматографии явилось создание газового хроматографа, в котором были совмещены принципы хроматографического разделения и неселективного детектирования разделенных веществ непосредственно в потоке подвижной газовой фазы, называемой газом-носителем. Подобно тому, как создание газового хроматографа привело к появлению первого важнейшего раздела в науке о хроматографических методах анализа — газовой хроматографии, решение проблемы непрерывного детектирования веществ в потоках жидких фаз способствовало появлению и развитию второго аналитического направления — жидкостной хроматографии. [c.180]

    Прн помощи масс-спектрометра можно снимать характерные спектрограммы летучих соединений, поэтому его можно использовать для идентификации газохроматографических фракций (если, конечно, они летучи). Стоимость масс-спектрометра сравнительно велика, но он обладает зато-двумя преимуществами 1) качественный анализ выходящего из хроматографической колонки потока газа удается производить непрерывно, без выделения выходящих из колонки веществ 2) для масс-спектрометрии достаточны даже такие малые количества вещества, которые выделяются при капиллярной газовой хроматографии. Поэтому именно в сочетании с капиллярными колонками масс-спектрометрия является наилучшим методом идентификации неизвестных составных частей. [c.265]

    При необходимости проводить реакцию при пониженных или повышенных температурах реакционный сосуд можно помещать в баню с постоянной температурой. Если это требуется в непрерывном анализе, то поток пропускают по спирали, погруженной в баню. В любом случае степень прохождения. реакции определяется температурой бани и продолжительностью нагревания. В продаже недавно появилось автоматическое устройство для превращения аминокислотных остатков (в продуктах гидролиза пептидов) в их летучие Ы-ацетиловые, Ы-пропиловые эфиры и введения этих эфиров в газовый хроматограф. Аналогичные операции можно проводить и с другими функциональными группами, которые легко превращаются в летучие производные. [c.389]

    На рис. 83 представлена принципиальная схема газового хроматографа. Вся система продувается непрерывно газом-носителем (водородом, азотом, диоксидом углерода) из баллона /. Проба анализируемого газа вводится в газовый поток с помощью устройства 2. Газ-носитель продвигает смесь через колонку 3 и детектор 4. Колонка— основная часть прибора, так как в ней газовая смесь разделя- [c.368]

    В большинстве неавтоматизированных газовых хроматографов давление на входе в колонку измеряют образцовым манометром, а расход газа-носителя пенным измерителем расхода на, выходе из детектора. В пенном измерителе расхода газа используют принцип замера времени прохождения мыльной пленкой определенного объема калиброванной бюретки. Время измеряют визуально с помощью секундомера при движении пленки снизу вверх. Расход газа рассчитывают по результатам измерений. Погрешность измерения составляет около 1%. С целью уменьшения погрешности измерения разработаны устройства, обеспечивающие автоматическую регистрацию и вычисление расходов газа с помощью оптических датчиков прохождения мыльной пленкой начала и конца отсчета калиброванного объема и электронного измерения времени. Погрешность измерения в этом случае менее 0,5%. Пенный измеритель расхода дает суммарный расход газа за время измерения, т. е. производит только периодические замеры расхода газа и не позволяет проводить непрерывное определение стабильности потока газа. [c.129]


    Газохроматографическое определение константы Генри и изотермы адсорбции. В методе газовой хроматографии [1, 24, 25] через заполняющий колонну адсорбент непрерывно пропускается поток газа-носителя, который обычно при температуре колонны на изучаемом адсорбенте практически не адсорбируется. Очистка поверхности производится током этого инертного газа при повышенных температурах. Это приводит к несколько худшей очистке поверхности от наиболее сильно адсорбированных примесей, чем в вакуумном адсорбционном методе. Трудно удалить таким способом молекулы воды и других полярных веществ с поверхности сильно специфических адсорбентов [1, 24, 25]. Легче очищается поверхность неспецифических адсорбентов. В этом случае, однако, предварительно адсорбированные молекулы могут остаться, по-видимому, только на наиболее неоднородных местах поверхности. Основная, наиболее однородная часть поверхности очищается от примесей. Таким образом, этот метод очистки поверхности имеет даже свои преимущества при измерениях адсорбционных свойств однородных поверхностей, особенно в случае неспецифических адсорбентов. [c.97]

    Метод удобен для калибровки газового хроматографа. Его следует предпочесть способу непрерывного разбавления известного количества паров диффузионному способу испарения, веществ из стеклянной капиллярной трубки в потоке газа способу выдувания летучего вещества нз его раствора в нелетучем растворителе. [c.26]

    Наиболее распространенные методики анализа пищевых продуктов [31, 32] включают использование таких методов, как тонкослойная хроматография, колоночная высокоэффективная жидкостная хроматография, газовая хроматография, атомно-абсорбционный и атомно-эмиссионный спектральный анализ, УФ-и ИК-спектроскопия, спектрофотометрия, масс-спектрометрия, ЯМР низкого разрешения, электрохимические методы (электрофорез, потенциометрия и др.). люминесцентный анализ (фосфоресценция и флуоресценция), рентгеновская флуоресценция, непрерывный анализ в потоке. [c.34]

    Метод 3 ввиду его простоты и надежности является основным в проточной газовой хроматографии. На практике регулируемый поток газа-носителя проходит непрерывно через колонку. При проведении анализа проба добавляется в определенной пропорции к потоку газа-носителя, пока все компоненты не пройдут колонку. После анализа поток пробы прекращают и пропускают через колонку чистый газ для продувки колонок. Существенно, что можно пользоваться обычной колонкой для газо-жидкостной хроматографии. [c.122]

    Следует уточнить некоторые вопросы терминологии, касающиеся классификации хроматографических методов. В самом простейшем случае под термином газовая хроматография подразумевается метод анализа, когда разделение смеси веществ в хроматографической колонке осуществляется в потоке газа (газа-носителя), непрерывно пропускаемого через колонку. Газоадсорбционная (разделение на адсорбенте — угле, силикагеле или оксиде алюминия) и газо-жидкостная (разделение на сорбенте — твердый носитель, покрытый жидкостью — неподвижной жидкой фазой) — это все варианты газовой хроматографии. [c.9]

    Во втором, упоминавшемся вначале варианте хроматографического разделения с поперечным потоком насадочные колонки не применяются. Проба и газ-носитель проходят в направлении от оси вращения наружу между двумя пластинами, покрытыми жидкой неподвижной фазой, расстояние между которыми составляет 50—150 мкм. В известной мере здесь можно говорить о непрерывном аналоге капиллярной газовой хроматографии. [c.385]

    Совместимость газохроматографических и масс-спектромет--рических приборов обусловливается общностью параметров газовая фаза, непрерывность потока, температурный интервал, пределы обнаружения, характеристики системы регистрации. Затруднения, связанные с необходимостью поддерживать вакуум в ионном источнике масс-спектрометра (10 —10 Па) и пропускать большие объемы газа-носителя через газохроматографическую колонку при давлении на выходе из колонки в 10 Па, устраняются введением в систему соединительного устройства (обогатителя, сепаратора). Оно обеспечивает уменьшение давления газа-носителя на несколько порядков и доступ в масс-спектрометр полезной части органической пробы. Значительно менее эффективной оказалась комбинация с ИК-, УФ-и ЯМР-спектрометрами, имеющими с газовой хроматографией лишь один — два общих параметра [123]. [c.101]

    Как и в газовой хроматографии, в современной жидкостной хроматографии применяют детекторы, позволяющие непрерывно фиксировать концентрацию определяемого вещества в потоке жидкости, вытекающей из колонки. В жидкостной хроматографии применяют также специальные коллекторы для сбора фракций с последующим их анализом. Однако непрерывное измерение концентрации с автоматической ее записью обладает неоспоримыми преимуществами перед пофракционным анализом. Успех современной жидкостной хроматографии наряду с другими факторами обеспечен именно созданием чувствительных детекторов непрерывного действия. [c.88]

    Принципиальная схема газового хроматографа представлена на рис. 57. Газ-носитель из баллона / поступает в блок подготовки газов 2, где происходит его очистка, устанавливаются объемная скорость и давление. В качестве газа-гюсителя используют гелий, азот, аргон, углекислый газ. В обогреваемый до температуры выше кипения исследуемой смеси испаритель 5, через который протекает поток газа-носителя, микрошприцем 3 через резиновую мембрану вводят пробу вещества. Захватив пары анализируемой пробы, газ-носитель поступает в хроматографическую колонку 6 — металлическую или стеклянную трубку длиной обычно от 0,5 до 4 м и диаметром 2—8 мм, заполненную гранулированной насадкой. Во избе-жение конденсации паров пробы колонка помещена в термостат 7. Выходящий из колонки газовый поток содержит зоны отдельных компонентов, разделенные зонами чистого газа-носителя и отличающиеся от них по электрической проводимости, плотности или другим параметрам. Измерение этих параметров на выходе из колонки позволяет определить относительное содержание компонента в смеси. Устройство, непрерывно регистрирующее значение того или иного параметра газового потока, называется детектором 8. [c.49]

    Газовая хроматография требует, однако, более сложного аппаратурного оформления (рис. 1). Подвижная фаза (газ-носитель) поступает в колонку из баллона со сжатым газом через редуктор или игольчатый вентиль. Чтобы поддерживать поток газа-носителя постоянным и измерять его скорость, требуются регулирующие и измеряющие устройства. Исследуемая проба должна подаваться в поток газа-носителя через дозатор. Для полного использования возможностей метода дозатор, колонка и детектор должны ыть термостатированы раздельно. Незначительные количества разделяемого вещества целесообразно определять не в отдельных порциях подвижной фазы, а в непрерывном газовом потоке с помощью специального высокочувствительного детектора, расположенного в конце колонки и преобразующего величину концентрации разделяемых веществ в подвижной фазе в электрический сигнал, который записывается в виде функции времени. [c.13]

    При реализации непрерывного режима через ячейку с заданным расходом пропускают потоки водного раствора и газообразного или органического экстрагента и после установления стационарного состояния измеряют концентрацию целевых компонентов в выходящем из ячейки потоке экстрагента. Для решения задачи концентрирования с получением выделенных веществ применяется дискретная схема проведения хроматомембранного процесса. В этом случае потоки двух фаз пропускают через ячейку последовательно с перекрытием каналов на входе и выходе той фазы, которая в данный момент является неподвижной. При перекрытии потока неполярной фазы должно соблюдаться соотношение Pj < Р , в обратном варианте - Рз < Рк. В дискретном режиме ячейка сначала заполняется экстрагентом, затем через масообменный слой пропускают анализируемую пробу в заданном объеме, после чего проводят элюирование веществ, сконцентрированных в экстрагенте. Определение концентрации вещества в элюате может осуществляться любым методом, например с помощью спектрофотометрического или люминесцентного детектора, или (в случае газа) газового хроматографа. [c.99]

    Адсорбция азота. Метод БЭТ [173] представляется наиболее надежным и точным и в дальнейшем будет подробно рассмотрен в гл. 5. В методах быстрого определения удельной поверхности порошков по адсорбции азота используется аппаратура с непрерывным потоком газа, основанная на принципах газовой хроматографии [174]. Эберли [175] изучил пригодность подобного метода к образцам кремнезема и сообщил о хорошем согласии с данными, полученными обычным методом равновесных изотерм. Этр и Циплински [176] представили обзор по газохроматографическим методам определения удельной поверхности и их приложениям. [c.479]

    В отличие от газовой илн колоночной жидкостной хроматографии, характеризующихся непрерывным потоком подвижной фазы, тонкослойная хроматография связана с переходом от одной партии пластинок к другой, что делает эту процедуру довольно трудоемкой. Для того, чтобы стимулировалось более широкое использование плоскостного варианта жидкостной хроматографии при серийном анализе, процесс необходимо еще более менханизировать (с учетом и автоматического перехода к количественной оценке результатов), чтобы свести к минимуму ручные операции. Уже внедряются различные варианты автомати зированной подготовки образца, включая применение автоматических устройств для взвешивания, разбавления, смешивания, гомогенизации, центрифугирования и экстрагирования образцов. Автоматические пробоотборники дают возможность наносить свыше 50 образцов с воспроизводимостью не хуже 1%. [c.311]

    Импульсные микрореакторы. В импульсных микрореакторах существует непрерывный поток газа-носителя через катализатор. Время от времени в поток газа-носителя вводят порцию реагирующих веществ (импульс), которая затем проходит в газовый хроматограф для анализа. Степень превращения реагирующих веществ (импульса) может быть незначительной или большой, но в обоих случаях концентрация реагирующего вещества на слое катализатора плохо определяется из-за смешения с газом-носителем, и введенные реагирующие вещества распределяются в потоке. При специальных условиях, например для реакции первого порядка, константы скорости реакции могут быть получены на основе импульсной методики [18]. В большинстве других случаев адекватная теоретическая обработка затруднена. Таким образом, хотя импульсные мик-рореакторы не подходят для определения кинетических параметров, они могут иметь некоторые достоинства при оценке качества катализаторов, поскольку дают возможность быстрого и гибкого проведения анализа. [c.103]

    Пьезоэлектрический метод использован также в анализаторе для определения отношения водород — углерод в углеводородах [157]. Смеси углеводородов (например, и-бутана, и-пентана, пен-тена-1) разделяют методом газовой хроматографии на колонке со скваленом и окисляют полученные компоненты кислородом в токе гелия при температуре пламени около 650 °С. После сжигания углеводородов поток окисленных продуктов разделяют на две части одну пропускают над кристаллом кварца, колеблюш,имся с частотой 9,000 МГц, который поглощает воду последовательно из бутана, пентана и пентена. Другую часть потока осушают хлористым кальцием и пропускают над вторым кристаллом кварца, колеблющимся с той же частотой и поглощающим диоксид углерода. Частота колебаний каждого кристалла кварца уменьшается пропорционально количеству поглощенных воды или диоксида углерода каждая из этих двух частот накладывается порознь на фиксированную частоту эталонного генератора — 9,001 МГц, в результате чего образуются три различных дифференциальных частоты. Полученные данные непрерывно регистрируются, и расчет соотношений водород — углерод производится автоматически. В качестве материалов для покрытия кристалла, сорбирующего воду, Сэнфорд и сотр. [157] использовали силикагель, оксид алюминия, природные и синтетические смолы для сорбции диоксида углерода эти авторы применяли полярные вещества, например полиэтиленгликоль. [c.587]

    ДОЛЖНЫ изменяться больше чем на 2% в течение непрерывной трехмесячной работы. Этот критерий нельзя непосредственно связать с летучестью неподвижной фазы, поскольку для определения скорости изменения объема удерживания необходимы трехмесячные испытания. Объемы удерживания будут в любом случае меняться с изменением химической природы пробы и применяемой скорости потока. Второй критерий, предложенный Туэем [2], состоит в определении предельной рабочей температуры, при которой колонка теряет 50% неподвижной фазы за. 1000 час непрерывной работы при скорости потока 15 мл1мин. Величины, которые были получены при этих испытаниях, имели примерно тот же порядок, что и величины, рекомендованные Комитетом по газовой хроматографии. Определения проводились на колонках, содержащих 2 г неподвижной фазы легко видеть, что получаемые величины соответствуют летучести 1,1 10 3 Единственная в прошлом попытка в определении верхнего температурного предела была сделана Харвеем и Чол- [c.268]

    Фронтальный анализ в газовой хроматографии реализуется при непрерывном пропускании через колонку смеси исследуемых компонентов в потоке газа-носителя с соблюдением постоянства концентрации. Область, занятая более легко адсорбирующимися компонентами, постепенно распространяется вдоль колонки до тех пор, пока адсорбционная емкость адсорбента не окажется исчерпанно . Компоненты, труднее адсорбирующиеся, не задерживаясь на адсорбенте, выходят из колонки в смеси друг с другом в порядке возрастания адсорбируемости, за исключением первого (наименее адсорбируемого) компонента, выходящего в чистом виде. [c.158]

    Предложенный Жуховицким и Туркельтаубом новый вид хроматографии — вакантохроматография — позволяет периодически определять состав газовой смеси в потоке без применения дорогостоящих (гелий) или взрывоопасных (водород) га-зов-посителей. Также выяснена возможность анализа сложной смеси углеводородов этим методом. Метод вакантохроматографии применен для анализа сероводорода в углеводородных газах и воздухе. Найдено, что хроматографическое определение сероводорода в этилене и в воздухе целесообразно проводить на трикрезилфосфате в качестве жидкой фазы, В этом случае через 6 мин после ввода анализируемой смеси наблюдается четкий пик сероводорода. Для анализа смеси методом вакантохроматографии применялась колонка длиной 2 м, диаметром 4 мм, заполненная инзен-ским кирпичом, пропитанным трикрезилфосфатом (40%). Опыты проводились на хроматографе типа ХЛ-3. Этилен или воздух,содержащий от 5 до 0,1% сероводорода, непрерывно пропускался через сравнительную камеру детектора, колонку и измерительную камеру. После установления адсорбционного равновесия (устойчивое положение нулевой линии хроматографа) вводился дозироваиный объем газа-дозатора. На хроматограмме возникал пик, соответствующий вакансии сероводорода. Высота пика вакансии была пропорциональна. концентрации сероводорода в анализируемой смеси, а также объему вводимой пробы газа-дозатора. Последнее позволило увеличить чувствительность метода. [c.627]

    Принцип этого варианта газовой хроматографии, впервые описанный Уиллисом (1959), а в последнее время развитый Рейлли, Гильдебрандом и Эшли (1962) и Жуховицким и Туркельтаубом (1962а) , состоит в том, что в поток непрерывно пропускаемой через колонку газовой смеси дозируется небольшой объем инертного газа в виде кратковременного импульса. При этом методе, который Жуховицкий и Туркельтауб назвали вакантохро-матографией, вначале по всей длине колонки устанавливается сорбционное равновесие между компонентами пропускаемой пробы и сорбентом. При введении инертного газа равновесие нарушается, и эти нарушения продвигаются вдоль колонки аналогично тому, как движутся зоны повышенной концентрации при нроявительной хроматографии. [c.436]

    За последние 10 лет газовая хроматография развилась в исключительно полезный аналитический инструмент. Эффективные разделения, соответствующие сотням и даже тысячам теоретических тарелок, можно производить колонкой длиной лишь несколько миллиметров. Попытки расширить масштабы этого процесса до очистки практических количеств вещества были не столь успешными вследствие трудностей достижения гомогенного профиля в колонке большого диаметра. До 1965 г. единственным эффективным препаративным газохроматографическим методом было вспрыскивание многих образцов в колонку аналитических размеров. К другим неудобствам препаративной газовой хроматографии относятся загрязнение продукта высокой чистоты следами жидкой фазы из колонки, которые непрерывно просачиваются в газовый поток, и разложение чувствительных к температуре веществ. Высокие температуры, необходимые для газовой хроматографии, являются существенным недостатком метода по сравнению с вакуумной перегонкой. [c.284]

    Хорошей иллюстрацией иерархии целей и средств может служить влияние газовой хроматографии на изучение реакций хлорирования. Лет пятнадцать тому назад для исследования газофазного хлорирования, скажем метана, потребовался бы по меньшей мере литр продукта, который надо было бы разделить путем тщательной дробной перегонки. При малых количествах продукта и определении состава промежуточных фракций с помощью таких свойств, как показатель преломления, осуществить это было очень нелегко. Процедура поглощала много труда и времени и обычно не давала информации о микропримесях. С появлением газовой хроматографии положение в корне изменилось. Теперь для анализа достаточно мельчайшей пробы, а применение соответствующих методов позволяет с легкостью определять компоненты, присутствуюпще в смеси в количестве менее 1 %. Чрезвычайно расширились возможности автоматизации экспериментов и непрерывного анализа на потоке и возросла потребность в быстром (осуществляемом за минуты, а не за часы) анализе сложных и часто агрессивных смесей, компоненты которых могут резко отличаться друг от друга по своим летучестям (в качестве практического примера приведем два соединения, которые можно обнаружить в продукте реакции оксихлорирования, — двуокись углерода и гексахлорбензол). Эту потребность удается удовлетворить благодаря применению капиллярных колонн и других технических приемов. [c.209]

    Для получения сополимеров этилена с пропиленом использовали пластмассовый реактор (1 л) с рубашкой, снабженный мешалкой, холодильником, термометром и трубкой для подачи газа. Оба газообразных мономера пропускали через калиброванные ротаметры, смешивали и подавали в реактор ниже уровня жидкости. Выходящий газ проходил через короткий холодильник, затем через ячейку для измерения теплопроводности и, наконец, через дозирующее устройство газового хроматографа. На линиях подачи устанавливали две группы ротаметров — для этилена и для пропилена. Скорость выходящего потока газа измеряли с помощью дополнительного ротаметра. Постоянная температура воды в рубашке реактора в течение всего процесса сополимеризации поддерживалась специальным регулирующим устройством. Компоненты каталитической системы (С2Н5)2А1С1 и УО(ОС Н5)з вводили раздельно и непрерывно пневматическими микронасосами, сохраняя постоянным отношение А1 V. [c.108]

Рис. XIII.11. Принципиальная схема непрерывной газовой хроматографии (способ с применением поперечного потока). Рис. XIII.11. <a href="/info/24285">Принципиальная схема</a> <a href="/info/40147">непрерывной газовой хроматографии</a> (способ с применением поперечного потока).
Рис. XIII. 12. Вращающийся узел препаративного газового хроматографа, работающего непрерывно по способу поперечного потока [38]. Рис. XIII. 12. Вращающийся узел <a href="/info/426505">препаративного газового хроматографа</a>, работающего непрерывно по <a href="/info/740201">способу поперечного</a> потока [38].

Смотреть страницы где упоминается термин Газовые хроматографы непрерывного потока: [c.348]    [c.225]    [c.20]    [c.123]    [c.23]    [c.255]    [c.5]    [c.23]    [c.255]   
Газо-жидкостная хроматография (1966) -- [ c.365 ]

Газо-жидкостная хроматография (1966) -- [ c.365 ]




ПОИСК





Смотрите так же термины и статьи:

Газовая хроматография непрерывная

Газовая хроматография хроматографы

Хроматограф газовый

Хроматография в потоке

Хроматография газовая



© 2022 chem21.info Реклама на сайте