Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты обычные

    Хлоргидраты эфиров аминокислот обычно легко кристаллизуются из смеси спирта и эфира. Выделение свободного эфира аминокислоты лучше всего проводить в отсутствие воды. Можно, например, добавить к спиртовому раствору хлоргидрата эфира аминокислоты вычисленное количество алкоголята натрия и отфильтровать выделившийся хлористый натрий  [c.357]

    Для установления конфигурации других асимметрических центров в молекулах аминокислот обычно уничтожают асимметрию у а-углеродного атома и сравнивают конфигурацию оставшейся части молекулы и какого-нибудь другого соединения. Непосредственное сопоставление с конфигурацией а-углеродного атома может быть сделано лишь методами рентгеноструктурного анализа. [c.373]


    HзN—Н—СОО-Аминокислоты обычно получают гидролизом белковых веществ или путем синтеза, например из галогенозамещенных карбоновых кислот  [c.103]

    Аминокислоты обычно называют как соответствующие им карбоновые кислоты с добавлением приставки амиЛо-и цифры или буквы греческого алфавита для обозначения положения аминогруппы в цепи. Например  [c.168]

    Как оказалось, эта кислота принадлежит к ряду О-амино-кислот, а не к ряду -аминокислот, к которому принадлежат все аминокислоты обычных природных белков  [c.602]

    Белки—важная составная часть пищи. Они перевариваются под действием пищеварительных соков в желудочно-кишечном тракте, расщепляясь в процессе пищеварения на небольшие молекулы, главным образом, по-видимому, на молекулы аминокислот. Такие небольшие молекулы способны проникать через стенки желудка и кишечника в кровь ток крови переносит их к различным тканям организма, где они служат исходными веществами для синтеза специфичных белков, необходимых данному организму. В некоторых случаях больным, организм которых неудовлетворительно усваивает пищу, вводят непосредственно в кровь питательные вещества в виде раствора аминокислот. Необходимый для этого раствор аминокислот обычно получают гидролизом белков. [c.385]

    В качестве растворителей для хроматографии аминокислот обычно используют последовательно 2 системы  [c.129]

    КИСЛОТЫ при комнатной температуре, а затем разбавленной соляной кислоты при температуре кипения смеси в присутствии некоторого количества этилового спирта. Этот метод дает хороший выход хлористоводородной соли аминокислоты. Обычно аминокислоту выделяют из ее хлористоводородной соли водным аммиаком 1-3, Метод выделения аминокислоты при помощи обработки спиртового раствора ее хлористоводородной соли пир идином в основном тот же, что и разработанный для получения глицина и а-аминоизомасляной кислоты . [c.61]

    Аминокислоты составляют всего лишь 0,2-0,3 % РОВ. Средние концентрации свободных аминокислот находятся в пределах 1,6-4,2 мкг С/л, тогда как содержание связанных аминокислот обычно на порядок выше (Дюма, 1988). [c.30]

    В табл. 2-2 приведены структурные формулы боковых цепей аминокислот, обычно встречающихся в белках (формула пролина приведена полностью). Даны также сокращенные трехбуквенные обозначения аминокислот, используемые при выписывании аминокислотных последовательностей пептидов и белков, а также однобуквенные сокращения, принятые в работах по эволюции белков и при составлении программ для вычислительных машин. [c.83]


    Производные аминокислот обычно циклизуются труднее, особенно в случае глицина, чем те же аминокислоты, входящие в состав пептидов. Для синтеза производных фенил-тиогидантоина (ФТГ) [86, 91] или количественного определения N-концевых остатков ФТК-производные часто циклизуют в 1 н. растворе НС1 в течение 1 час при 100°. Однако в этих условиях ФТГ-производные серина, треонина и цистина нестабильны, поэтому их не удается выделить и количественно определить. Кроме того, все ФТГ-производные в кислой среде разлагаются, причем степень разложения возрастает с увеличением кислотности и повышением температуры [114, 317]. В водной среде максимальный выход ФТГ-производных достигается при действии сильной кислоты при сравнительно низких температурах и по возможности меньшей продолжительности реакции. При низкой температуре реакционной смеси и применении концентрированных кислот (1—5 н.) удалось синтезировать ФТГ-производные серина, треонина и цистина в водной среде [159, 195]. Кроме того, эти соединения легко получаются в среде уксусная кислота — HG1 [289]. [c.240]

    Важное значение белков и составляющих их аминокислот обусловило большой интерес к определениям аминокислот методом ГХ. Существуют различные методы автоматического анализа с использованием хроматографии на колонке, однако ГХ обеспечивает более быстрый анализ и позволяет уменьшить величину анализируемой пробы, Было предложено большое число различных по типу производных, чтобы осуществить количественное определение двадцати аминокислот, обычно обнаруживаемых в белках. Выбор наилучшего производного осложняется большей частью тем, что эти аминокислоты содержат 12 различных функциональных групп, а желательно получить метод, применимый для анализа все>с [c.137]

    Характерной особенностью белкового обмена является его чрезвычайная разветвленность. Достаточно указать, что в обмене 20 аминокислот, входящих в состав белковых молекул, в организме животных участвуют сотни промежуточных метаболитов, тесно связанных с обменом углеводов и липидов. Число ферментов, катализирующих химические реакции азотистого обмена, также исчисляется сотнями. Следует добавить, что блокирование одного какого-либо специфического пути обмена даже одной аминокислоты, обычно наблюдаемое при врожденных пороках обмена, может привести к образованию совершенно неизвестных продуктов обмена, так как возникают условия для неспецифических превращений всех предшествующих компонентов в данной цепи реакций. Отсюда становятся понятными трудности интерпретации данных о регуляции процессов азотистого обмена в норме и особенно при патологии. Этими обстоятельствами можно объяснить исключительную перспективность изучения обмена белков с целью выяснения особенностей их катаболизма и синтеза, овладение тонкими молекулярными механизмами которых, несомненно, даст в руки исследователя ключ к пониманию развития и течения патологических процессов и соответственно к целенаправленному воздействию на многие процессы жизни. [c.410]

    Аминокислоты обычно существуют в цвиттерионной форме [c.72]

    Запасные белки, которые служат источниками углерода и азота прорастающих семян, состоят из ограниченного повторяющегося набора аминокислот. Пищевая ценность этих белков невелика, поскольку в них отсутствуют одна или несколько незаменимых аминокислот (обычно лизин или метионин). Аминокислотный состав запасных белков семян можно немного изменить обычным скрещиванием, а недавно для этих целей были использованы генноинженерные методы. [c.408]

    Аминокислоты обычно нельзя детектировать фотометрическим методом. Поэтому до или после разделения с помощью соответствующих химических реакций их превращают в поглощающие или флуоресцирующие вещества. [c.227]

    В пространственном строении белков большое значение имеет характер радикалов (остатков) R в молекулах аминокислот. Неполярные радикалы аминокислот обычно располагаются внутри макромолекулы белка и обусловливают гидрофобные (см. ниже) взаимодействия, полярные радикалы, содержащие ионогенные (образующие ионы) группы, обычно находятся на поверхности макромолекулы белка и характеризуют электростатические (ионные) взаимодействия. Полярные неионогенные радикалы (например, содержащие спиртовые — ОН-группы, амидные группы) могут располагаться как на поверхности, так и внутри белковой молекулы. Они участвуют в образовании водородных связей. [c.11]

    Аминокислоты обычно получают из соответствующих им карбоновых кислот реакциями, позволяющими вводить аминогруппу. Так, при действии аммиака на солы галогенозамещенной кислоты получают аминокислоту в соответствии со следующими схемами, показывающими возможный переход от уксусной кислоты к аминоуксусной  [c.168]

    Для проведения реакции в более мягких условиях используют активированные аминокислоты. Обычно активируют карбоксильную группу аминокислоты, получая эфиры, тноэфиры, амиды или смешанные ангидриды, что приводит к повышению электрофильности углеродного-атома этой группы, например  [c.379]


    Это пример полимеризации с раскрытием цикла, так как полимер, по-виднмому, образуется в результате реакции активного центра на конце растущей цепи с циклическим мономером по ионно-цепному механизму [62]. Гомополимеры (п-аминокислот) обычно трудно перерабатываются сополимеры более удобны в обрашенни. как показывают следующие примеры. [c.291]

    До 1940 г. аминокислоты обычно рассматривались как относительно стойкие строительные блоки, поступающие в организм с пищей. От этих представлений быстро отказались после начатых Шёнкеймером исследований метаболизма ННз и аминокислот, меченных изотопом Сразу же обнаружилось, что азот часто быстро переходит из одного углеродного остова в другой. Эти результаты подтвердили предположения, выдвинутые ранее Браунштейном (гл. 8, разд. Д). Браунштейн указывал, что С4- и С5-аминокислоты, аспартат и глутамат, тесно связанные с циклом трикарбоновых кислот, способны быстро обменивать свои аминогруппы на аминогруппы других аминокислот путем переаминирования [уравнение (14-12), стадии бив]. Поскольку при этом аммиак легко включается в глутамат [уравнение (14-12), стадия а ом. следующий раздел], нетрудно представить себе существование общего пути синтеза аминокислот. [c.88]

    Существует и другой путь распада глутамата а-аминобутиратный шунт, рассматриваемый в гл. 9 (рис. 9-4). а-Аминобутиратный шунт начинается не с дезаминирования или переаминирования, а с зависимого от пиридоксальфосфата декарбоксилирования. Поскольку декарбоксилазы известны для большинства аминокислот, обычно существует несколько путей, по которым может пойти начинающееся таким образом расщепление. В ткани мозга -у-аминобутират, как полагают, функционирует как важный нейромедиатор (гл. 16, разд. Б, 4, б). [c.101]

    Вариант второй. Учитель, указав на тему урока, выписывает на доске формулу аминоуксусной кислоты и обращается к учащимся с вопросом какие свойства могут проявлять аминокислоты Обычно они указывают на проявление свойств кислоты и свойств оснований. Учитель демонстрирует опыт к раствору аминоуксусной кислоты он приливает индикатор (например, лакмус)—окраска раствора не изменяется. Как объяснить наблюдаемое — обращается учитель к классу. Далее учащимся предлагается прис тупнть к выполнению учебного задания, которое приведено по первому варианту урока. [c.187]

    Все эти процессы еще более свойственны пептидам, чем самим аминокислотам. Такое поведение аминокислот во время гидролиза имеет исключительное значение, поскольку в результате распада наблюдается не только разложение аминокислоты, но и превращение ее в другую. Если при этом образуется аминокислота, обычно не обнаруживаемая в белках (например, орнитин или лантионин), то легко устаиовить, что она является артефактом. Более серьезным недостатком метода является образование аминокислот, входящих в состав белка, например, глицина, так как о<но может привести к ошибочным заключениям. [c.478]

    За немногими исключениями (например, р-аланин или у-аминомас-ляная кислота) все природные аминокислоты являются а-аминокисло-тами. Известно более 200 соединений, имеющих структуру такого типа. В состав белков входят лишь около двадцати аминокислот. Обычно природные аминокислоты имеют -конфигурацию при С-2. В некоторых метаболитах микроорганизмов можно, однако, обнаружить К-амино-кислоты. [c.554]

    По полярности боковой цепи Я различают полярные и неполярные аминокислоты. К неполярным аминокислотам относятся глицин и аланин, а также гидрофобные аминокислоты — валин, лейцин, изолейцин, пролин, метионин и фенилаланин. К полярным аминокислотам причисляют серин, треоиин, цистеин, аспарагин, глутамин и триптофан (нейтральные соединения), аспарагиновую и глутаминовую кислоты и тирозин (кислые гидрофильные аминокислоты), а также лизин, аргинин и гистидин (основные гидрофильные аминокислоты). Гидрофильные полярные соединения увеличивают растворимость пептидов и белков в водных системах, в то время как нейтрально-полярные аминокислоты ответственны за каталитическую активность ферментов. В противоположность неполярным гидрофобным аминокислотам полярные аминокислоты обычно находятся на поверхности молекулы белка. [c.17]

    Значение этих соединений определяется тем, что они входят в состав биохимически важных фосфопептидов и фосфобелков. Эти аминокислоты обычно образуются из гидроксиаминокислот (Ser, Thr, Hyp) и содержат фосфор, снязанный ковалентной Р—О-связью. Их получают, например, при [c.74]

    Хотя аминокислоты обычно изображают как соединения, содержащие амино- и карбоксильную группу H2N HR 00H, некоторые их свойства, как физические, так и химические, не согласуются с этой структурой. [c.1040]

    Аминокислота обычно обнаруживает самую низкую растворимость в растворе при изоэлектрической точке, поскольку при этом концентрация днполяр- [c.1042]

    Для гидролиза белков до составляющих их аминокислот обычно используют хлороводородную кислоту (бМ, 24 ч, 120°С, эвакуированные запаянные ампулы). Однако этот метод не лищеи побочных реакций. Из генетически кодированных аминокислот интенсивно распадается триптофан, в то время как выходы серина и треонина составляют только 90—95%. Может происходить также хлорирование тирозина и образование орнитина из аргинина. Нередко метионин частично превращается в соответствующий сульфоксид, а цистеин полностью окисляется в цистин. Глутамин и аспарагин, естественно, гидролизуются до глутаминовой и аспарагиновой кислот. Использование п-толуолсульфокислоты может повысить выход триптофана [11], однако эту аминокислоту обычно определяют после гидролиза с помощью гидроксида бария. С другой стороны, щелочной гидролиз, помимо того, что вызывает рацемизацию, приводит к больщим потерям серина, треонина, цистеина и аргинина. [c.231]

    Диалкилгидантоины, получаемые при синтезе С-алкил-а-аминокислот, обычно устойчивы к гидролизу. Однако тозилирова-ние этих интермедиатов приводит к продуктам, из которых легко можно выделить желаемые аминокислоты схема (15) [30]. [c.238]

    Что касается аминокислот, входящих в состав гликопротеинов, то последние представлены чаще всего во всем их разнообразии, хотя можно отметить несколько интересных особенностей. Так, содержание ароматических и серусодержащих аминокислот обычно очень невелико. Отмече-но , что все известные гликопротеины по аминокислотному составу могут быть разделены на две довольно определенные группы. Гликопротеины одной группы, содержащие небольшой процент сахаров и близко стоящие к белкам, имеют обычный стандартный набор аминокислот к этой группе относятся гликопротеины плазмы и многие другие углеводсодержащие белки. Гликопротеины второй группы содержат относительно меньше аминокислот, но состав этих аминокислот более специфичен наиболее характерным признаком этой группы гликопротеинов является очень высокая доля оксиаминокислот (серина и треонина), которые в отдельных случаях, например в групповых веществах крови, составляют половину всех аминокислот аномально высоким бывает также содержание пролина и глицина.  [c.568]

    Этерификация [9]. Метиловые сложные эфиры аминокислот обычно получают, используя в качестве катализатора э4х1)сктивные катиоиные И. с.—IR-120 (Н + ) или зео-карб 222 (Н + ). И. с. обрабатывают 2—4 объемами 2 и. соляной кислоты, промывают до нейтральной реакции п высушивают. Смесь И. с., аминокислоты и мета  [c.63]

    Раствор нитросоединения в разбавленном аммиаке или, при работе с амидами, суспензию в воде или же в разбавленном растворе аммиака приливают к кипящему раствору 7 молей кристаллической сернокислой закиси железа в 2—2,5 частях воды. К смеси при энергичном перемешивании прибавляют небольшими порциями концентрированный раствор аммиака. После того как раствор становится заметно щелочным, его кипятят в течение 5 мин. и затем тотчас же фильтруют. Если раствор не показывает щелочную реакцию, прибавляют еще некоторое количество аммиака. Дальнейшая обработка зависит от природы восстанавливаемого продукта. Некоторые амииосоединеиия вьшадают уже три охлаждении фильтрата. Если в результате восстанов.тення образуется аминокислота, обычно оказывается необходимым упарить раствор в вакууме до небольшого объема и затем подкислить его уксусной кислотой. [c.410]

    Производные аминокислот обычно получают через аминокар-боксилатные соли, образующиеся при щелочной обработке при этом увеличивается скорость нуклеофильных реакций свободной аминогруппы. [c.279]


Смотреть страницы где упоминается термин Аминокислоты обычные: [c.386]    [c.443]    [c.280]    [c.681]    [c.132]    [c.376]    [c.243]    [c.203]    [c.233]    [c.261]    [c.216]    [c.257]    [c.194]    [c.554]    [c.327]   
Органическая химия Углубленный курс Том 2 (1966) -- [ c.629 ]




ПОИСК







© 2025 chem21.info Реклама на сайте