Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление металлов газообразным кислородом

    Исследованиями механизма и кинетики обжига сульфидов цветных металлов [1—3] установлено, что при окислении сульфидов газообразным кислородом существенное влияние на кинетику окисления и состав конечных продуктов оказывают реакции, протекавшие между твердыми компонентами шихты, в частности, взаимодействие между сульфидами и окислами металлов, протекающие по общему уравнению  [c.63]


    Отсутствие надежных данных по кислородному перенапряжению объясняется сложностью процесса анодного образования кислорода и почти неизбежным наложением на него побочных и вторичных реакций. Прежде всего необходимо напомнить, что обратимый кислородный электрод экспериментально реализовать чрезвычайно сложно, и, следовательно, входящая в уравнение (20.5) величина не определяется опытным путем. Ее обычно рассчитывают теоретически. Для выделения газообразного кислорода из растворов кислот необходимо, чтобы потенциал анода был более положительным, чем равновесный потенциал кислородного электрода ( + 1,23 В при ан = 1 и 25° С), на величину кислородного перенапряжения, отвечающую данной плотности тока. Однако еще до достижения такого высокого положительного потенциала больщинство металлов термодинамически неустойчивы, и вместо реакции выделения кислорода идет процесс их анодного растворения или окисления. Для изучения кинетики выделения кислорода из кислых сред можно использовать поэтому только металлы платиновой группы и золото (стандартные потенциалы которых ноложительнее потенциала кислородного электрода), а также некоторые другие металлы, защищенные от растворения в кислотах стойкими поверхностными оксидами. В щелочных растворах, где равновесный потенциал кислорода менее положителен (при аоп-= 1 и 25° С он составляет около +0,41 В), в качестве анодов применяют также металлы группы железа, кадмий и некоторые другие. Установлено, что в условиях выделения кислорода поверхность всех металлов, включая платину и золото, оказывается в большей или меньшей степени окисленной, и поэтому кислород выделяется обычно не на самом металле, а на его оксидах. [c.421]

    В патентной литературе имеется также описание некаталитического (термического) окисления низших газообразных парафинов, которое проводили при недостатке кислорода в реакторе из металла, устойчивого к действию высоких температур и продуктов реакции [7]. Температура процесса равнялась 400—500°, причем температуру поверхности реактора поддерживали на уровне ниже 200°. Полученные гидроперекиси имели такое же строение, что и гидроперекиси, обнаруженные в только что описанном опыте, однако незначительные изменения в условиях реакции приводили к образованию водного раствора перекиси водорода как основного продукта из числа веществ, содержавших активный кислород. Так, например, при работе со смесью из 90% пропана и 10% кислорода с продолжительностью реакции 5 сек. (температура в реакторе 470°, температура стенки 150°) основным кислородсодержащим продуктом была перекись водорода, полученная в виде 3—4%-ного водного раствора [8]. Этот способ получения перекиси водорода, по-видимому, уступает место прямому окислению изопропилового спирта, в результате которого тоже образуется перекись водорода (см. гл. 8, стр. 150). [c.71]


    При взаимодействии металла с сухими газами (воздухом, газообразными продуктами горения топлива и др.) при высоких температурах происходит газовая химическая коррозия. Этот вид коррозии возможен и при низких температурах, если при этом на поверхности металла не конденсируется жидкость, проводящая электрический ток. Газовой коррозии подвергаются детали газовых турбин, двигателей внутреннего сгорания, арматура печей подогрева нефти и другие изделия, работающие при повышенных температурах в среде сухих газов. При проведении многочисленных технологических процессов обработки металлов в условиях высоких температур (нагрев перед ковкой, прокаткой, штамповкой, при термической обработке - закалка, отжиг, сварка) на металлургических и трубопрокатных заводах также возможна газовая коррозия. При взаимодействии металла с кислородом воздуха или содержащимся в других газах происходит его окисление с образованием окисных продуктов коррозии. В отдельных случаях, например при воздействии на металл паров серы или ее соединений, на поверхности металла могут образоваться сернистые соединения. [c.17]

    Возможность окисления металлов газообразным кислородом при наличии трудноиспаряющегося оксида определяется качеством покрывающей металл оксидной пленки. [c.38]

    Если окисление углерода газообразным кислородом реализуется при атмосферном давлении, то концентрация кислорода в поверхностном слое металла у границы с газовой фазой выше, чем в объеме. Поэтому кислород диффундирует в направлении от поверхности в объем. [c.51]

    Прямые а и б на диаграмме ограничивают область устойчивости воды. При электродных потенциалах выше этой области происходит окисление, приводящее к выделению газообразного кислорода. При потенциалах ниже этой области происходит восстановление, сопровождающееся выделением газообразного водорода. Когда металл погружен в водный раствор, то условия, как правило, соответствуют точке внутри этой области. [c.21]

    Исследований, в которых изучался состав конвертерной ванны во время продувки, еще очень мало, что связано со значительными трудностями при отборе проб. Однако уже имеются некоторые очень интересные экспериментальные данные. Содержание кислорода в объеме металлической ванны в процессе продувки определяли в работе [147]. Здесь было показано, что содержание кислорода в металле хотя и превышает равновесные с углеродом значения, но в отличие от мартеновского процесса очень мало зависит от содержания окислов железа в шлаке и марганца в металле. Сверхравновесное с углеродом содержание кислорода снижалось при уменьшении концентрации углерода менее 0,10% при очень низком содержании углерода в металле концентрация кислорода была ниже равновесного значения. Для объяснения полученных результатов авторы этой работы допускают развитие и даже преимущественную роль прямого окисления углерода газообразным кислородом в реакционной зоне. При этом концентрация кислорода в металле, по их мнению, зависит от отношения Рсо, Рсо зе, равновесном с металлом реакционной зоны и внедряющимся в виде пузырей в объем металла. [c.107]


    Окисление железа. Вследствие высокой (приближающейся к 100%) концентрации железа в шихте оно окисляется непосредственно газообразным кислородом на поверхности металла в зоне его контакта с кислородной струей  [c.78]

    К первом,у случаю относятся все протекающие с уменьшением объема реакции газообразных веществ с газами (например, синтез аммиака, метанола и др.), с жидкими веществами (жидкофазное гидрирование, окисление ряда соединений кислородом воздуха и пр.) и с твердыми веществами (синтез карбонилов различных металлов). [c.9]

    Растворение металла приводит к разрушению электрода. Поэтому для анода используют благородные металлы (например, платину). Окисление газообразного водорода — важная реакция в топливных элементах. Реакции вьщеления газообразных кислорода и хлора обычно наблюдаются в электромембранных процессах и в электролитическом производстве этих газов. [c.59]

    В последние годы переплавка легированных отходов, особенно с большим содержанием легирующих элементов, производится без применения дорогого мягкого железа. Для понижения содержания углерода в этом случае применяется вдувание газообразного кислорода в жидкий металл как в конце периода плавления шихты, так и после окончания этого периода. Правильно регулируя температуру нагрева металла, составы исходной шихты и шлака, возможно таким способом окислить преимущественно углерод, кремний и марганец, без больших потерь в виде угара таких легкоокисляющихся легирующих элементов, как хром, вольфрам и некоторые другие. Для того чтобы уменьшить потери ценных легирующих элементов, после окончания продувки кислородом производят раскисление шлака до удаления его из печи. При этом часть окислов, имеющихся в шлаке, восстанавливается и некоторое количество легирующих элементов возвращается из шлака в металл. Следует отметить, что при окислении кислородом элементов, находящихся в составе стали, выделяется большое количество тепла. [c.219]

    Окисление кокса представляет собой гетерогенную химическую реакцию, в которой участвуют газообразный кислород, твердый углерод и обедненные водородом высокомолекулярные углеводороды, расположенные на поверхности внутренних пор и на внешней поверхности частиц катализатора. Скорость реакции окисления кокса зависит от условий регенерации температуры, удельного расхода воздуха, количества отложенного кокса, концентрации кислорода в газовом потоке, скорости его подвода к зоне горения, отвода продуктов сгорания в реакционный объем, поровой структуры катализатора, содержания металлов на поверхности катализатора и др. В зависимости от условий окисление кокса может протекать в следующих трех основных областях в кинетической области, во внутренней диффузионной области, во внешней диффузионной области. [c.39]

    В этой реакции катион переходного металла, соседний или близкий к рассматриваемому каталитическому центру, восстанавливается до более низкого валентного состояния. В следующей стадии повторного окисления газообразный кислород адсорбируется и заполняет вакансии, создаваемые стадией (V)  [c.83]

    Поразительно, что шабазит после насыщения аммиаком имеет меньшее сопротивление, чем исходный водосодержащий шабазит. Вуд наблюдал в нем отчетливое движение катионов, главным образом щелочных и щелочноземельных ионов. Кроме того, происходило заметное выделение газообразного водорода (а не кислорода) в количестве, удовлетворяющем закону Фарадея. Вуд развил мысль о существовании внутреннего раствора структурных ионов в воде, находящейся в порах и каналах. Так же как при электролизе щелочной соли, водород выделяется при разряде ионов. Такое явление, как вхождение серебра в кристаллическую структуру, Вуд объясняет частичным окислением металла кислородом на аноде. [c.664]

    Атмосферную коррозию, протекающую под молекуляр ным слоем влаги (до 10 нм), называют сухой атмосферной коррозией. Эта разновидность коррозии характеризуется поверхностным окислением металла по химическому механизму взаимодействия какого-либо реагента а газообразном виде. Например кислород воздуха или сероводород, клк примеси в воздухе, взаимодействуют с поверхностью металла (потускнение никелевых, цинковых, оловянных покрытий, латунных изделий, почернение медных, серебряных покрытий). [c.137]

    Наиболее типичной степенью окисления молибдена и вольфрама и одной из важнейших для хрома является +6. Как отмечено выше, М0О3 и WO,i получаются непосредственным термическим окислением металлов газообразным кислородом. СгОз непосредственно из элементов получить нельзя. Он кристаллизуется в виде ярко-красных игл при действии на раствор дихромата калия КгСг О, концентрированной серной кислотой  [c.339]

    Окисление монооксида азота газообразным кислородом на катализаторах. Процесс протекает с большей скоростью. Наиболее эффективные катализаторы — гопкалит, карбоалюмогель, силикагель, а также катализаторы на основе драгоценных металлов. Окисление моноокснда азота можно интенсифицировать также добавлением соответствующего количества диоксида азота. [c.64]

    Механизм явления быстрого роста тонкой окисной пленки, который в последнее время изучали Деволд [331] и другие, в настоящее время не может еще считаться окончательно выясненным. Во всяком случае резкое замедление скорости роста при достижении определенной толщины показывает, что перемещение ионов и атомов при росте очень тонких пленок происходит по механизму, отличному от обычной диффузии, которая наблюдается в более толстых слоях. Несмотря на некоторое сходство, существующее между процессом образования защитных пленок при окислении металлов газообразным кислородом в отсутствие влаги и пассивацией при действии растворенных окислителей или анодной поляризации, явления эти нельзя считать тождественными. [c.173]

    При адсорбции кислорода на германии из газовой фазы при давлении кислорода 10 мм рт. ст. и комнатной температуре наблюдается следующее интересное явление. Адсорбция идет быстро, пока не адсорбируется монослой кислородных атомов. Контактный потенциал во время быстрой адсорбции изменяется на 0,15 в. Второй атомный слой кислорода адсорбируется с быстро убывающей скоростью, и после этого адсорбция резко замедляется (ср. адсорбцию на железе, стр. 172). Во время медленной адсорбции контактный потенциал изменяется уже на 0,33 в, что показывает существенное отличие строения второго слоя от первого. Но если подвергнуть поверхность германия с сидящими на ней двумя монослоями кислорода действию паров воды (а затем избыток паров воды удалить откачиванием), то после этого на металле вновь может адсорбироваться газообразный кислород в значительном количестве. Эту операцию с попеременным действием воды и кислорода можно повторить много раз. Следовательно, при адсорбции воды на германии, покрытом адсорбционным слоем кислорода, происходит изменение структуры адсорбционного слоя,— он теряет свои защитные свойства против дальнейшего окисления металла газообразным кислородом. Адсорбция воды на окисленном германии необратима (в отличие от адсорбции ее на чистой поверхности металлического германия). Это видно из того, что после откачки паров воды величина контагстного потенциала германия оказывается сильно измененной по сравнению с его величиной до адсорбции воды [365]. [c.195]

    С большей скоростью протекает окисление NO газообразным кислородом на катализаторах. Наиболее эффективными их них являются гопкалит, карбоалюмогель, силикагель, а также катализаторы на основе драгоценных металлов. [c.119]

    Ацетсфеноп H,,--СО—СНд получается также путем жидкофазного окисления зтилбензола газообразным кислородом в присутствии солей тяжелых металлов с промежуточным образованием гидроперекиси этилбензола, распадающейся под действием ионов тял-се-лого металла  [c.281]

    Механизм газовой коррозии связан с протеканием на поверхности раздела твердой и газообразной фаз двух сопряженных реакций окисления металла и восстановления газообр 13ного окислителя, причем в пространстве эти два процесса, как правило, не разделены. В этом же месте происходит и накопление продуктов реакции окисления. Для непрерывного осуществления реакции атомы и ионы металла, с одной стороны, и атомы или ионы кислорода или другого окислителя, с другой, диффундируют сквозь постепенно утолщающуюся пленку продуктов коррозии. В результате газовой коррозии на поверхности металла образуются соответствующие соединения оксиды, сульфиды и др. В зависимости от свойств образующихся продуктов может происходить торможение процесса окисления. [c.686]

    Сульфиды легко окисляются при нагревании на воздухе. Окислительный обжиг составляет одну из стадий пирометаллургичес-кой переработки сульфидного сырья. Для более глубокого понимания процесса окисления сульфидов, правильного его регулирования и изыскания новых, более совершенных способов обжига сульфидных концентратов Г. С. Френц [40] систематически изучено взаимодействие сульфидов ряда металлов цинка, кадмия, меди, свинца, никеля, железа с кислородом, а также установлена скорость протекания и последовательность отдельных реакций в системе Ме—О. Изучалось изменение фазового состава продуктов реакции в зависимости от температуры и концентрации кислорода в газовой фазе. Установлено, что окисление сульфидов металлов газообразным кислородом, выражающееся суммарно реакцией МеЗ + Р/зОо = МеО -г 50з, является сложным гетерогенным процессом, который включает ряд промежуточных стадий  [c.276]

    Прохождение металла через пленку возможно только, если состав ее может отличаться от стехиометрического, причем отклонения эти бывают разного рода. Так, в случае окисления цинка газообразным кислородом окисная пленка вблизи поверхности металла содержит избыток ионов цинка по сравнению с составом, который бы точно отвечал формуле ZnO, и эквивалентное колрпгество электронов . Избыточные ионы Zn + находятся между узлами решетки. У внешней поверхности концентрация этих из- [c.169]

    Для электрохимии при комнатных температурах особый интерес представляют отклонения от выраженного уравнением (52) параболического закона роста в случае очень тонких нленок, состоящих только из нескольких кристаллических ячеек окисла. Отклонения наблюдаются нри окислении железа, алюминия, нержавеюпщх сталей и других металлов нри не слишком высоких температурах. Еще И. Лэнгмюр установил, что при окислении железа газообразным кислородом имеются две стадии первая — быстрая, а когда слой кислорода на новерхности металла достигает толщины порядка одного молекулярного диаметра, наступает вторая стадия и скорость окисления резко снижается [324—329]. [c.171]

    Кончая обсуждение явления пассивности, коснемся путей возникновения пассивирующего слоя. Можно указать два основных пути. Первый, наиболее известный — адсорбция или выпадение вещества, осуществляющего пассивность, из раствора без электрохимического изменения вещества в самом акте нассивации, например, адсорбция на металле газообразного кислорода, выпадение изолирующего слоя соли из пересыщенного раствора на поверхности металла. Этому может предшествовать переход ионов пассивирующегося металла в раствор в результате электрохимической реакции. Второй путь —электрохимическое образование на электроде пассивирующего вещества без предварительного перехода его в раствор. Этим путем, например, происходит анодная адсорбция кислорода из воды на платине в слабокислом растворе, так же нассивируется железо в разбавленных растворах щелочи. При соответствующих условиях такой пассивирующий окисел может медленно растворяться, если возможна, хотя бы и замедленная, химическая реакция между растворенным веществом (например кислотой или щелочью) и окислом. При таком растворении металл активируется. Таким путем, по данным А. И. Зака, протекает также образование окисной пленки при анодном окислении алюминия в щелочи. [c.145]

    Как теоретически, так и практически больщой интерес представляет процесс электрохимического выделения кислорода этот процесс вследствие высокой химической активнссти кислорода осложняется образованием на металлах различных окислов даже на платине, поэтому выделение газообразного кислорода происходит с окисленной поверхности. То, что до сих пор нет достаточно обоснованной теории кислородного перенапряжения, объясняется, очевидно, главным образом сложностью процесса выделения кислорода. Наиболее достоверно предположение о том, что самой медленной стадией (лимитирующей стадией) является распад высших металлических окислов переменного состава по уравнению [c.629]

    А. Окислительный перибд плавки. Ъ этот период в печи протекают процессы окисления углерода до заданного содержания, уменьшение содержания в металле фосфора, азота и водорода и нагрев металла до температуры близкой к температуре выпуска. В качестве окислителей используются оксиды железа, содержащиеся в руде и агломерате в составе шихты, или газообразный кислород, подаваемый под давлением в печь. В конце окислительного периода из печи скачивают образовавшийся шлак. [c.91]

    Для понимания процесса химической коррозии и разработки против нее эффективной защиты необходимо прежде всего знать механизм окисления металла и свойства окисной пленки. Известно, что активность металлов по отношению к кислороду уменьшается с повышением темперагуры. При нагревании оксида металла до соответствующей температуры происходит ее разложение (диссоциация), и реакция (2.5) протекает справа налево до конца. Мерой стойкости оксида можно считать давление образующегося газообразного кислорода (после установления равновесия) над помещенным в закрытый сосуд оксидом - давление диссоциации. Оксид образуется на поверх ности металла только при такой температуре, когда давление диссо циации меньше, чем парциальное давление кислорода в соприкамю щемся с металлом газе (например, воздухе, дыме). Так, давлени1 диссоциации оксида серебра примерно при 400 С превосходит пар циальное давление кислорода в воздухе, поэтому при температуре [c.21]

    Наконец, при потенциалах, превышающих равновесный потенциал кислородного электрода, увеличение плотности тока будет происходить в результате окисления воды с выделением газообразного кислорода. Легче всего этот процесс протекает на тех металлах, чьи окисные пленки обладают высокой электронной проводимостью (золото, платина). На анодах нз таких металлов гидроксильные ионы беспрепятственно отдают свои электроны, окисляясь до молекулярного кислорода. Если же окпсные пленки, экранирующие поверхность металла, отличаются низкой электро[щой проводимостью, то анодный процесс направляется не на разложение воды с выделением кислорода, а на увеличение толщины окисной пленки — так называемое анодное оксидирование. При этом анодный потенциал нередко может достигать значений порядка сотен вольт (точнее говоря, таких знач ений достигает падение напряжения в пределах окисной пленки при протекании электрического тока). [c.196]

    Процесс разрушения металла вследствие взаимодействия его с окружающей средой называется коррозией. Различают два основных вида коррозийных процессов химическую и электрохимическую коррозию. Химическая коррозия — это разрушение металла в результате химического взаимодействия его с сухими газами или жидкостями, не проводящими электрцческого тока (бензин, керосин, нефть и др.). Большой вред народному хозяйству приносит так называемая газовая коррозия — окисление металлов различными газообразными окислителями (кислородом воздуха, SO2, 4 алогенами и др.)-Наиример, под действием кислорода воздуха уже при комнатной температуре поверхности многих металлов покрываются оксидными пленками. Дальнейшее окисление металлов зависит от плотности образовавшейся пленки и ее дефе1 тов. Электрохимическая коррозия — это разрушение металла в присутствии воды или другого электролита. Причем наряду с химическими процессами (потеря электронов) в этом случае происходят и электрические (перенос электронов от одного участка к другому). Электрохимическая коррозия наблюдается при контакте двух различных металлов в присутствии электролита вследствие образования гальванической пары. Этот про- [c.213]

    При взаимодействии газообразного кислорода с металлом на последнем возникает оксид, который, если он не летучий, образует поверхностный слой, предохраняющий металл от дальнейшего окисления. В общем случае химическая реакция между металлом и газообразным кислородом, приводящая к образованию оксидной фазы, описывается простЫ1М уравнением хМе+у1 (202) = = МвхОу. Однако несмотря на кажущуюся простоту этой реакции, характер окисления и кинетика роста оксидных слоев зависят от ряда факторов, существенно усложняющих механизм процесса окисления металлов. [c.33]

    Развитие химии неорганических перекисных соединений можно разделить на четыре периода первый — от открытия Л. Тенаром перекиси водорода (1818) до открытия Д. И. Менделеевым периодического закона (1868). Этот период характеризуется широкими исследованиями, проведенными Л. Тенаром и его последователями, по взаимодействию окисленной воды с различными веществами, что привело к синтезу целого ряда ее производных. Кроме того, проводились другие исследования по взаимодействию газообразного кислорода с металлами, что привело к открытию А. Гаркуром первого представителя нового типа перекисных соединений, не производных перекиси водорода, — падперекиси калия, названного тогда тетраокисью, и к промышленному осуществлению Т. Кастнером способа получения перекиси натрия. [c.7]

    Другие поверхностные реакции. РГмеется большое число данных (часто противоречивых) о катализе металлами других радикальных цепных реакций, кроме гидрирования и дегидрирования. Окисление газообразным кислородом всегда является цепной реакцией, а высокотемпературное горение часто идет на поверхности. Парофазное окисление окиси углерода и простых углеводородов может инициироваться поверхностями таких металлов, как платина, серебро, медь и железо, хотя при более высоких температурах эти же металлы тормозят воспламенение горючих газовых смесей. [c.240]

    При действии газообразного кислорода на твердый металл образуется окисел, который, если он нелетуч, покрывает металл поверхностным слоем. Этот слой может предохранять или не предохранять металл от дальнейшего окисления. Незащищающий слой не оказывает препятствия для проникновения кислорода к неокислен-ному металлу его толщина X не влияет на скорость процесса и растет с постоянной скоростью = onst. За исключением [c.446]

    В последнее время вновь приобрел большую актуальность вопрос о возможности прямого участия кислородных ионов решетки 0 в окислительном катализе на окислах. Это имеет значение также и для переходных металлов, так как в условиях окислительного катализа они обычно покрыты тонкими оксидными пленками. Прямое участие кислорода катализатора в окислительном катализе принималось во многих старых работах, рассматривавших такой катализ как попеременное восстановление и новое окисление катализатора. Долгое время такое представление оставалось преобладающим в каталитической литературе. За этим последовал период преобладания адсорбционных представлений, согласно которым окисление осуществляется адсорбированным кислородом, и прежняя точка зрения сохранилась в немногих случаях, в частности для окислительного катализа на окислах ванадия. Применительно к окислению окиси углерода в СО на МпОа вопрос об относительном участии решеточного и адсорбированного кислорода исследовался Ройтером [8] с использованием катализирующего окисла MnOj, меченного 0 . Эти авторы пришли к выводу об отсутствии заметного содержания кислорода катализатора в СОз и о неприменимости схем с чередующимся восстановлением и окислением катализатора. Убедительность этого вывода оспаривалась другими авторами [9]. Гипотеза о прямом участии кислорода катализатора в окислении в последнее время вновь прирбрела много сторонников в связи с результатами более детального раздельного изучения взаимодействия окисных катализаторов с окисляемыми веществами и кислородом и с более детальным исследованием скоростей поэтапно проводимого окисления. Особенно большую роль при этом сыграло изучение кинетики и механизма окислительного дегидрирования олефинов на смешанных оксидных висмут-молибденовых катализаторах, промотированных железо-хромовых и других. Одним из первых Захтлер [6] выдвинул точку зрения о том, что началом окислительного процесса является восстановление 0 -ионов поверхности окислов водородом из молекул углеводорода в ОН-группы с последующим отщеплением одной молекулы воды из этих двух ионов и образованием в конечном виде одной кислородной вакансии, способной вновь превращаться в 0 или реагировать с кислородом из газовой фазы (см. также [10]). Серьезным доводом в пользу этого является способность соответствующих активных оксидных систем осуществлять полностью процессы окислительного дегидрирования без введения газообразного кислорода, за счет кислорода твердой фазы. Подобный факт наблюдался и изучался рядом авторов и послужил одной из отправных точек в развитии современной теории окислительного дегидрирования. Особенно хороша это явление наблюдается при изучении взаимодействия олефина с окисны- [c.273]

    Если же -отношение -объем-а -оксида к -объему металла больше единицы, то -образующаяся пленка имеет комп1актную, сплошную структуру, надежно изолирует металл от воздействия газообразного кислорода -и, следовательно, препятствует дальнейшему окислению металла. [c.38]


Смотреть страницы где упоминается термин Окисление металлов газообразным кислородом: [c.357]    [c.377]    [c.50]    [c.202]    [c.155]    [c.625]    [c.85]    [c.104]   
Электрохимия металлов и адсорбция (1966) -- [ c.169 , c.175 ]





ПОИСК





Смотрите так же термины и статьи:

Кислород газообразный

Металлы окисление



© 2020 chem21.info Реклама на сайте