Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дефекты макроскопические

    Отмеченные фрактографические закономерности изломов металла характерны и для сварных соединений. Однако специфические макро- и микроструктурные особенности сварных соединений накладывают определенные отпечатки на характер их разрушения. Отличительной особенностью сварных соединений является структурная неоднородность, обусловливающая различие механических и химических свойств отдельных участков (механическая неоднородность). Кроме того, в сварных соединениях более вероятно появление дефектов (непровар, холодные и горячие трещины, поры, включения и др.) и выше уровень напряженности из-за остаточных (сварочных) напряжений. Металл шва в большинстве случаев имеет более высокие механические свойства, поэтому при отсутствии макроскопических дефектов при статическом нагружении разрывы происходят по основному металлу по механизму вязкого или хрупкого разрушения. Однако наличие дефектов и участков с различными вязкопластическими характеристиками существенно изменяет характер и местоположение разрыва (рис.2.4 2.5). Даже незначительные подрезы в швах могут перевести место разрушения с основного металла (ОМ) в область шва (Ш) или зоны термического влияния (ЗТВ). При этом плоскости разрушения располагаются вблизи линий сплавления (рис. 2.4,6), под углом 45° (рис. 2.4,в) и 90° (рис.2.4,г) к направлению действия максимальных напряжений. Прямой излом может реализоваться как при вязком, так и хрупком разрушениях, но с различными фрактографическими параметрами поверхности излома. Непровар швов способствует разрушению в результате косого среза (рис.2.4,л) или прямого излома (рис. 2.4,м). При наличии в изломе нескольких очагов разрущения поверхность излома имеет сложное очертание с различной ориентацией к направлению действия максимальных главных напряжений. Нередко в сварных соединениях имеют место так называемые мягкие и твердые прослойки (рис. 2.5). [c.68]


    Картина сильно изменится, если от идеальных подобных образцов разных размеров перейти к реальным образцам. Допустим, что полимер обладает свойствами, позволяющими применить любой из трех способов изготовления образцов прессование, литье под давлением и экструзию. Если бы материал представлял собой низкомолекулярное вещество, молекулы которого, кроме того, имели бы по трем пространственным координатам мало отличающиеся друг от друга геометрические размеры, нельзя было бы констатировать никакой анизотропии свойств образцов, полученных любым из перечисленных трех способов. Масштабный фактор снова относился бы только к дефектам макроскопической структуры образцов. Положение меняется, как только технолог получает полимер, размер молекулы которого по одной из трех пространственных координат значительно больше, чем по двум другим. Нить, канат, трос будут как раз теми макроскопическими образцами, которые подобны молекуле линейного полимера. В том случае, когда одним из трех перечисленных способов изготовляется образец из линейного полимера, можно наблюдать влияние способа изготовления образцов на их свойства. [c.26]

    Доказав симбатность указанных зависимостей, Гуль и сотр. показали, что в рассматриваемых ими системах (расплав полимера — твердое тело или расплав полимера — полимер в застеклованном состоянии) имеет место микрореологический механизм развития истинной поверхности контакта. В формировании контакта между алюминиевой фольгой и расплавом полиэтилена участвуют два типа дефектов — макроскопические и микроскопические [10]. При температуре формирования адгезионного контакта 120 °С увеличение истинной поверхности контакта происходит, по-видимому, путем заполнения крупных дефектов — борозд, возникающих на поверхности фольги в процессе прокатки. Этот процесс заканчивается достаточно быстро, и рост адгезионной прочности по мере увеличения продолжительности контактирования прекращается (рис. 2.5). При 190°С вязкость расплава полиэтилена снижается в несколько раз. Поэтому появляется возможность заполнения более мелких дефектов поверхности субстрата, продолжительность процесса формирования адгезионного контакта увеличивается и рост адгезионной прочности прекращается значительно позже (см. рис. 2.5). Важно подчеркнуть, что степень окисления полиэтилена в интервале температур 120— [c.70]


    Среди дефектов, присутствующих на всякой реальной поверхности, следует различать макроскопические и микроскопические дефекты. Макроскопический дефект — это нарушение периодической структуры, охватывающее область, значительно превышающую по своим размерам постоянную решетки. Сюда относятся трещины на поверхности кристалла, поры, различные макроскопические включения. Мы сейчас не будем рассматривать дефекты такого рода. Микроскопический дефект — это нарушение, размеры которого того же порядка, что и отдельная кристаллографическая ячейка. К микроскопическим дефектам относятся пустые узлы в поверхностном слое решетки, чужеродные или собственные атомы решетки, посаженные на поверхность, различные группы, образованные из таких атомов ( ансамбли ) и пр. Мы ограничимся сейчас рассмотрением дефектов именно этого рода. Хемосорбированные частицы также могут рассматриваться как микродефекты, представляя собой локальные нарушения в строго периодической структуре поверхности. Заметим, что каждый микродефект вызывает вблизи себя некоторую деформацию решетки. Под дефектом, строго говоря, следует понимать всю ту область, внутри которой решетка деформирована. [c.151]

    Таким образом, в зависимости от металла, условий и характера нагружения разрушение происходит по механизму вязкого или хрупкого разрушений. Вязкое разрушение реализуется в результате макроскопической или локальной потери устойчивости пластических деформаций. Деформации, предшествующие вязкому разрушению, достаточно велики и составляют более 10-15%. При нормальных условиях эксплуатации трубопроводов и сосудов вязкое разрушение возможно лишь при наличии макроскопических дефектов. Излом при вязком разрушении волокнистый, иногда имеет шиферность, древовидность, [c.74]

    СЛОИСТОСТЬ. Хрупкие разрушения трубопроводов и сосудов возможны при существенном охрупчивании металлов и наличии микро- и макроскопических дефектов. Хрупкое разрушение характеризуется кристалличностью и наличием радиальных рубцов в изломе, малой величиной утяжки (менее 20%) и остаточной деформацией. Причинами хрупкого разрушения являются деформационное старение, низкая температура, динамичность нагрузки и др. [c.75]

    Процесс образования новых поверхностей в новом теле под нагрузкой связывают с явлением разрушения. Если тело изолировано от внешней среды, разрушение происходит без потери массы. В противном случае разрушение сопровождается с той или иной степенью потери массы в зависимости от активности внешней среды. В некоторых случаях для возникновения разрушения необязательно приложение внешней нагрузки, например, при коррозионном воздействии, хотя в ряде случаев существенно ускоряет его. Разрушение рассматривается не как элементарный акт, а как процесс постепенного образования новых поверхностей в микро- и макромасштабах. В связи с этим механизм разрушения изучают в двух аспектах физика разрушения, базирующаяся на атомных, дислокационных и других моделях и механика разрушения, в основу которой положены модели и реальные конструкции с макроскопическими дефектами (трещинами). В процессе нагружения твердого тела совершается работа и в материале возникают силы сопротивления деформированию, оцениваемые компонентами тензора напряжений и деформаций. В определенный момент времени какой-либо механический фактор Q (движущая сила разрушения) достигает некоторого критического значения К (рис.2.7), после чего конструкция переходит в новое состояние (текучесть, разрушение, изменение первоначаль- [c.75]


    Как отмечалось выще, больщой разброс прочности и ее зависимость от формы образца можно объяснить, вводя понятие различной степени напряженности дефектов. Это означает замену одной статистической переменной (исходной прочности) другой (макроскопической прочностью или долговечностью). Хотя такая замена не учитывает природу микроскопических дефектов, все же она позволяет получить с помощью статистического анализа информацию о размере, числе, положении и напряженности этих дефектов (трещин). Термин дефект следует употреблять с некоторой осторожностью. Во-первых, дефект можно рассматривать как полость эллипсоидальной формы, которая может действовать как концентратор напряжения и как возможный источник нестабильности и ослабления материала. Во-вторых, его следует также понимать как слабую область, содержащую молекулярные нерегулярности. Под [c.63]

    Задачей рентгеновской дилатометрии является измерение теплового расширения кристаллов методами температурной рентгенографии. Несмотря на то, что точность рентгеновских измерений коэффициентов теплового расширения (КТР) кристаллических тел обычно не превосходит 10 ) и существенно ниже точности обычных дилатометрических методов, тем не менее рентгеновская дилатометрия имеет свои несомненные преимущества, обусловившие ее широкое применение в экспериментальных исследованиях. К их числу относятся возможность определения КТР анизотропных кристаллов на поликристаллических образцах и меньшая чувствительность к присутствию в образце макроскопических дефектов. Для некоторых кристаллов рентгеновская дилатометрия является единственным возможным методом определения КТР, [c.153]

    Таким образом, размер наибольшего дефекта, модуль упругости (Е) материала и параметр, связанный с работой разрушения поверхности ( с), по-видимому, определяют прочность, т. е. макроскопическую величину о одноосного напряжения, при которой наступает необратимое распространение трещины. Выражение (3.13) служит математической формой ранее использованного понятия о том, что размер дефекта (или его напряженность) определяет прочность образца. Это также объясняет, почему реально получаемая макроскопическая прочность много меньше теоретической прочности образцов, не содержащих дефектов. [c.72]

    В отличие от теорий механики сплошных сред в теориях разрушения при молекулярных кинетических процесах учитывается дискретность частиц и элементов, составляющих материальное тело. В теории кинетических процессов предполагается непосредственно связать разрыв связей, смещение элементов и переход от отдельных актов воздействия на молекулярные цепи к макроскопической деформации, росту дефекта и разрушению структуры материала. [c.75]

    Здесь член РйУ относится к изменению объема, не превышающему для пластических деформаций металла порядка сотых долей процента. Следовательно, этим членом можно пренебречь. Заметим, что речь идет о внешнем давлении, тогда как внутреннее (локальное) давление в окрестности дефектов структуры, уравновешивающееся по объему кристалла, может достигать огромных величин оно обусловливает деформационное увеличение энтальпии кристалла, эквивалентное росту внутренней энергии. Освобождение этой энергии при постоянном давлении происходит в количестве, эквивалентном выделившемуся при рекристаллизации количеству тепла = йН, по которому и определяется запас энергии упругих искажений. Если исключить обратимую деформацию тела, то для использования соотношения ЬQ = йН в принципе неважно, что послужило причиной увеличения внутренней энергии (при постоянном давлении). Например, если каким-либо способом возбудить глубокие электронные оболочки атомов, то может отсутствовать не только макроскопическая деформация тела, но и локальная (возникающая в окрестности дислокации). При соответствующих условиях эта энергия возбуждения рассеивается в виде фононов, т. е. энтальпия переходит в тепло. [c.27]

    В гл. 8 была рассмотрена главным образом роль перестройки пространственно-однородного распределения молекулярной структуры в процессе зарождения разрушения. Термин пространственно-однородный означает отсутствие дефектов, включений, трещин или надрезов, размеры которых достаточ.ны, чтобы служить концентраторами напряжений. При таких условиях распределение очагов повреждений и их рост на начальной стадии внешнего нагружения однородно по объему образца. В таком случае неоднородное разрушение определяется как процесс, противоположный однородному разрушению, или как процесс разрушения, вызываемого распространением трещины. В данном случае трещины, надрезы, включения пли сконцентрированные зародыши трещин действуют как концентраторы макроскопического напряжения, которые, по существу, ограничивают дальнейший рост повреждения ближайшим окружением имеющихся там дефектов. Явление образования трещины серебра включено в данную главу в связи с хорошо различимыми в ней структурными неоднородностями и несмотря на тот факт, что новые трещины серебра могут формироваться с увеличением напряжения в произвольных местах, где имеются зародыши. [c.332]

    Несмотря на то что было выполнено значительное количество исследований по различным аспектам образования трещин серебра, не существует общего мнения относительно механизма начала их роста. До сих пор не существует приемлемой теоретической модели, с помощью которой можно было бы предсказать, образуются ли в данном полимере при данных условиях трещины серебра или нет. А если это произойдет, то каково влияние температуры и скорости деформирования на образование и распространение трещины серебра. Конечно, это связано с тем, что начало роста трещины серебра зависит одновременно от трех групп переменных, характеризующих соответственно макроскопическое состояние деформаций и напряжений, природу дефектов, создающих неоднородность в материале, и молекулярные свойства полимера при данных температурных условиях и химической среде. Существует пять различных по смыслу моделей процесса возникновения трещины серебра, в которых используются различные определяющие параметры. Эти модели основаны соответственно на разности напряжений, критической деформации, механике разрушения, ориентации молекул и их подвижности. Результаты основных исследований и критерии начала роста трещин серебра, предложенные на основе указанных выше моделей, перечислены в табл. 9.4. [c.367]

    Наряду с примесными дефектами в кристаллической решетке полупроводников существуют и дефекты другого рода. Это дислокации и тепловые дефекты, возникающие при резком охлаждении полупроводников. На макроскопических неоднородностях решетки, какими являются поверхность или границы зерен и т. п., также возникают локализованные состояния электронов, которые проявляются преимущественно как акцепторы (см. гл. IX). [c.241]

    Заметим в этой связи, что в континуальной упругой модели точечных дефектов Зинера [38, 39] основным предположением теории также является отождествление изотермо-изобарической работы деформации тела, приводящей к образованию дефектов, с термодинамическим потенциалом дефекта (поскольку эта работа составляет лишь часть общей работы деформации, необходимо исключить обратимую работу макроскопически упругой деформации тела). [c.47]

    В Основных направлениях экономического и социального развития СССР на 1981—1985 годы и на период до 1990 года намечено повысить качество строительства объектов трубопроводного транспорта и обеспечить их надежную работу. Основной путь повышения надежности и снижения металлоемкости металлических конструкций — создание расчетных методов оценки их прочности и долговечности на базе более полного учета реальных эксплуатационных условий. Особенно актуален вопрос о совершенствовании количественной оценки надежности газопромысловых труб, от бесперебойной работы которых во многом зависит реализация регламентированного объема добычи газа. Суш,ествующие расчетные методы оценки работоспособности газопромысловых трубопроводов основываются на теории сопротивления материалов и некоторых механических характеристиках металлов (предел текучести вт, временное сопротивление Ов), полученных на образцах, испытываемых в лабораторных условиях. При этом эксплуатационные условия и среда учитывались формально, путем введения коэффициентов запаса прочности, условий работы и запаса на коррозионный износ. Эти коэффициенты не учитывают реальную динамику напряженного состояния трубопроводов. Другими словами, существующие методы расчета не учитывают временной фактор, хотя в настоящее время его влияние на работоспособность металлических конструкций считается бесспорным. Временной фактор связывают с явлениями старения, усталости и коррозии металлов, которые активируют процессы разрушения во время эксплуатации при наличии микро- и макроскопических дефектов. В настоящее время эти явления интенсивно изучаются как в Советском Союзе, так и за рубежом. [c.3]

    Поликристаллическим металлам присущи различная ориентировка, анизотропия физико-механических свойств, дефекты строения кристаллической решетки отдельных зерен (кристаллитов), а также наличие различных дефектов и примесей между ними. В таком случае в напряженном металле даже при напряжениях, намного меньших макроскопического предела текучести ат, возникают локальные участки всестороннего растяжения или сжатия (гидростатическое давление) в очагах микропластических деформаций, ускоряющих коррозионное растворение. Величина гидростатического давления близка по порядку величине приложенного напряжения. [c.18]

    Происходят по механизму вязкого или хрупкого разрушения. Заметим, что в кислых средах, вызывающих общую коррозию, часто отмечается заметное снижение относительного сужения, хотя равномерное удлинение может быть таким же, как и при испытаниях на воздухе. Важно подчеркнуть, что только лишь в условиях общей коррозии может реализоваться вязкое разрушение бездефектного металла оборудования при нормальных режимах эксплуатации. Это можно объяснить тем, что несмотря на постоянство действующей на объект нагрузки, из-за уменьшения рабочего сечения при коррозии напряжения и деформации возрастают, и в определенный момент времени возможно наступление текучести металла, а затем потеря устойчивости пластических деформаций (шейкообразова-ние) по аналогичному механизму при растяжении образца монотонно возрастающей нагрузкой (рис. 2.7). В условиях локализованной (язвенной, точечной) коррозии коррозионные поражения инициируются в областях с выраженной механохимической неоднородностью свойств. При этом окончательное разрушение происходит в результате сдвига или отрыва (рис. 2.6). Часто имеет место сквозное коррозионное поражение в виде язв без участков долома. Коррозионное растрескивание возможно даже при отсутствии макроскопических дефектов или концентраторов напряжений, например, в средах, содержащих влажный сероводород. Разрушение при коррозионном растрескивании, как правило, хрупкое. В сварных соединениях в большинстве случаев коррозионное растрескивание инициируется в местах перехода от металла шва к основному металлу (рис. 2.6,г). Особенностью разрушений при кор-розионно-механическом воздействии является наличие на из гомах продуктов коррозии, большого количества коррозионных поражений, ветвление трещин и др. [c.71]

    Кристаллы с идеально правильной структурой редко встречаются на практике. Большинство твердых кристаллических веществ обладает дефектами структуры как в микроскопических, так и макроскопических масштабах. К числу таких дефектов относятся отсутствие катионов или анионов в их обычных положениях, замещение ионов примесями, а в более крупных масштабах— нарушения правильной геометрии кристаллической решетки. [c.183]

    Реальные макроскопические твердые тела обладают многочисленными статистически распределенными дефектами структуры (дислокации, микротрещины и т. д.). Волновые процессы в таких дефектных структурах имейт существенные особенности. [c.111]

    Первый вид адгезии проявляется при совершенно глгщких и плотных поверхностях и обз словлен специфическим взаимодействием между молекулами адгезива и субстрата. Второй вид адгезии характерен для поверхностей, имеющих поры или макроскопические дефекты. [c.8]

    НИИ металла происходит изменение размеров, формы и ориентации магнитных доменов, при этом домены вступают во взаимодействие с дефектами кристал.1шческой решетки и макроскопическими дефектами [76, 77], Следовательно, величина магнитной проницаемости щ в значительной степени определяется поврежденностью материала, что делает возможным использование данной характеристики для анализа механизмов повреждения исследуемых сталей. [c.36]

    В данной монографии мы рассмотрим физическую природу образования дефекта на примере линейных термопластов и эластомеров (табл. 1.1). Известно, что эти материалы имеют широкий диапазон свойств, хотя и состоят из подобных молекул. Их молекулы преимущественно линейные, гибкие имеют высокоанизотропные (невытянутые) цепи с молекулярными массами 20000—1 000000 и более. На рис. 1.9 представлена цепная молекула полиамида-6 (ПА-6) в невытянутом состоянии с произвольным выделением сегментов, а на обведенной вставке показано ее основное звено. Относительные положения атомов и часть объема, занятая ими в цепи, иллюстрируются с помощью модели Стюарта для сегмента полиамида (рис. 1.10). Действительный размер распрямленного сегмента —1,97 нм. Если бы к такому сегменту можно было приложить напряжение вдоль оси цепи, то изгиб и растяжение основных связей обеспечивали бы в результате жесткость цепи 200 ГПа [15], в то время как межмолекулярное взаимодействие сегментов вследствие более слабых вандерваальсовых сил обеспечивает жесткость только 3—8 ГПа в направлении, перпендикулярном оси цепи. Характерные свойства твердых полимеров, а именно анизотропия макроскопических свойств, микронеоднородность и нелинейность, а также сильная временная зависимость [c.12]

    Наконец, наиболее грубыми являются макроскопические, видимые в ряде случаев невооруженным глазом,дефекты, представляющие собой различного рода нарушетшя сплошности шш однородности металла. Эги дефекты могут стать причиной особенно резкого снижения прочности детали и ее разрушения. С увеличением размеров детали вероятность наличия дефектов возрастает, поэтому реальное снижение прочности на крутшогаба-ритных деталях проявляется более резко (масштабнвш фактор). [c.71]

    Поверхность как в макроскопическом, так и в микроскопическом отношении является одним из основных дефектов трехмерной структуры твердого тела. Обрыв периодичности решетки приводит к изменению координационной сферы поверхностных атомов (молекул) и в большинстве случаев — к регибридизации их связей порядок в расположении атомов (молекул) и межатомные расстояния изменяются. Поэтому реальная поверхность, как правило, неоднородна, обладает повышенной активностью и обусловливает бесчисленное количество физических, химических и биологических явлений. Некоторые из них мы уже рассмотрели (см. гл. IV и V). Ниже исследуем еще ряд поверхностных явлений, которые можно отнести к основным. Для этого нам необходимо выбрать подходящую модель поверхности. Следует отметить, что пока не созданы модели поверхности, учитывающие основные изменения, вызванные обрывом периодичности решетки. Однако ясно, что нарушенная структура поверхности не может сразу перейти к упорядоченной структуре объема. Поэтому имеет смысл говорить о некоторой поверхностной фазе (макроскопическая модель) и рассмотреть поверхностные явления прежде всего с позиции термодяГнамики. [c.440]

    Эксплуатационные нагрузки в элементах нефтехимической аппаратуры не постоянны во времени, а изменяются по случайным или детерминированным законам. Переменность нагружения вызывается пусками-остановами, изменением температуры и давления, воздействием ветровых и сейсмических нагрузок и др. Если конструкция испытывает статические нагрузки, то при отсутствии коррозии, облучения и других воздействий она может служить без разрушения бесконечно большое время. Циклические нагрузки приводят к постепенному накоплению повреждений в металле и последующему разрушению (усталости). Наиболее интенсивно повреждения накапливаются в зонах микро- и макроскопических дефектов конструктивных концентраторов напряжений. Наиболее распространенными концентраторами являются сварные швы. Особенно опасны, как уже упоминалось, трещиноподобные концентраторы резкие переходы корень шва нахлесточных соединений смещение кромок подрезы швов и др. Высокий уровень в таких концентраторах приводит к возникновению пластических деформаций, которые от цикла к циклу 1акапливаются и при достижении накопленными деформациями критических значений образуются трещины и наступает разрушение (малоцикловая усталость). Поскольку малоцикловая усталость связана с пластическими деформациями возникает необходимость оценки степени пластических деформаций в зонах концентраторов напряжений. [c.5]


Смотреть страницы где упоминается термин Дефекты макроскопические: [c.141]    [c.291]    [c.67]    [c.71]    [c.321]    [c.89]    [c.42]    [c.67]    [c.75]    [c.321]    [c.65]    [c.215]    [c.53]    [c.188]    [c.276]    [c.506]    [c.523]    [c.21]    [c.303]   
Введение в физическую химию кристаллофосфоров (1971) -- [ c.151 , c.250 ]





ПОИСК







© 2020 chem21.info Реклама на сайте