ПОИСК Статьи Рисунки Таблицы 6.8.3. Численное моделирование переходных и турбулентных режимов конвекции. В этом пункте мы вновь вернемся к задаче, рассмотренной в п. 6.8.1, но будем изучать ее при больших числах Грасгофа, в турбулентном режиме конвекции. При изучении турбулентных движений традиционным является представление мгновенного значения скорости (или скалярной компоненты — температуры, концентрации) в виде ее среднего значения ы некоторого отклонения от среднего (пульсации). Использование такого представления в исходных нестационарных уравнениях гидродинамики, записанных относительно мгновенных значений (с учетом ряда дополнительных соотношений, известных под названием постулатов Рейнольдса) приводит к уравнениям относительно средних значений, в которых в выражение для тензора напряжений включены различные соотношения, связывающие пульсации скорости (дисперсии, корреляции скорости и т. д.) (см., например, [20], [25]). При этом осреднеиные уравнения оказываются незамкнутыми и одной из проблем расчета турбулентных течений является проблема замыкания — нахождения недостающих связей между характеристиками осредненного и пульсационного движений. Основной недостаток такого рода методов состоит в необходимости использования большого объема эмпирической информации, что уменьшает ценность теоретического исследования. Одни1к из путей для преодоления этих противоречий в разработке теории и методов расчета турбулентных течений является попытка вернуться к численному решению исходных нестационарных уравнений Навье — Стокса.