ПОИСК Статьи Рисунки Таблицы Большое внимание в последние годы уделяется применению в пиролитических устройствах лазерной техники. Условия лазерного пиролиза существенно отличаются от термического, поскольку лазер обеспечивает проведение контролируемого пиролиза. С его помощью излучение определенной длины волны заданной энергии в течение очень короткого времени может быть направлено на ограниченную область материала пробы: излучение импульсного лазера (например, с использованием рубинового или ниобиевого стекла) фокусируется и направляется на анализируемый объект. Продолжительность импульса обычно составляет около 0,001 с, а энергия — около 5 Дж/импульс [213]. Если эта энергия фокусируется на пятне диаметром 0,1 см, то плотность излучения составляет -6,4-10® Вт/см [206, с. 235]. Определенная часть этой энергии поглощается пиролизуемым образцом. Обсуждалось несколько механизмов этого процесса; по-видимому, наилучшим образом описывает этот процесс полифотонная абсорбция [214]. В результате абсорбции часть пиролизуемого образца переходит в плазменное состояние. В процессе взаимодействия лазерного импульса с веществом образовавшийся плазменный факел растет в направлении лазерного удара. Скорость роста факела в вакууме составляет 10® см/с. Высокое давление, возникающее в плазме, порождает ударную волну, действующую на образец. По имеющимся оценкам температура возникающей плазмы составляет более 10® К [215, 216] . Эти процессы, в том числе рост факела и его угасание, протекают за время примерно 0,001 с. В этих условиях происходят химические превращения вещества, сопровождающиеся образованием значительных количеств летучих продуктов. Часть этих продуктов образуется в плазме, часть — как результат термического удара — в веществе.