Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English
Изучение вклада в реальную структуру всевозможных дефектов сталкивается с трудностями, которые обусловлены многообразием источников дефектообразования. В связи с этим необходима их систематизация, в основу которой можно положить принцип, учитывающий степень воздействия этих дефектов на диссипацию энергии в монокристаллах. На основе этого принципа всю совокупность дефектов условно можно разделить на три группы. К первой группе относятся так называемые трехмерные дефекты — всевозможные включения макроскопических размеров. Ко второй группе относятся двумерные дефекты — блочные и малоугловые границы, линии скольжения и дислокации. И, наконец, к третьей группе можно отнести одномерные дефекты вакансии, примеси, кластеры. Так как почти все вышеуказанные дефекты в монокристаллах при высоких температурах подвижны, то учесть их вклад без знания динамики дефектов практически невозможно. Несомненно, более эффективное влияние на реальную структуру оказывают дефекты третьей группы, поскольку их плотность в монокристаллах может быть очень высокой.

ПОИСК





Твердофазные химические реакции

из "Высокотемпературная кристаллизация из расплава"

Изучение вклада в реальную структуру всевозможных дефектов сталкивается с трудностями, которые обусловлены многообразием источников дефектообразования. В связи с этим необходима их систематизация, в основу которой можно положить принцип, учитывающий степень воздействия этих дефектов на диссипацию энергии в монокристаллах. На основе этого принципа всю совокупность дефектов условно можно разделить на три группы. К первой группе относятся так называемые трехмерные дефекты — всевозможные включения макроскопических размеров. Ко второй группе относятся двумерные дефекты — блочные и малоугловые границы, линии скольжения и дислокации. И, наконец, к третьей группе можно отнести одномерные дефекты вакансии, примеси, кластеры. Так как почти все вышеуказанные дефекты в монокристаллах при высоких температурах подвижны, то учесть их вклад без знания динамики дефектов практически невозможно. Несомненно, более эффективное влияние на реальную структуру оказывают дефекты третьей группы, поскольку их плотность в монокристаллах может быть очень высокой. [c.77]
Хаимов-Мальков [78] рассмотрел процессы диффузии в монокристаллах лейкосапфира, согласно которым собственные точечные дефекты могут взаимодействовать с примесными атомами (центрами), меняя их валентное состояние и пространственную конфигурацию. В результате образуется малоподвижный примесно-дефектный комплекс. Такой процесс описывается в рамках твердофазных химических реакций. Изменение валентного состояния примеси и, следовательно, структуры примесного центра, приводит к соответствующему изменению объема кристалла, определяемого с помощью дилатометра. То есть в конечном счете по этой причине возникают механические напряжения, обладающие значительными градиентами и оказывающие влияние на процесс диффузии. [c.77]
Со — начальная концентрация примеси в исходном веществе q — концентрация дефектов на границе образца w ( ) — вероятность захвата (химической реакции) подвижного дефекта ионом примеси в единицу времени с образованием дефектного центра w- — вероятность обратного процесса. [c.78]
Здесь V — коэффициент Пуассона, в — температура кристалла (в энергетических единицах), Ь — толщина кристалла в единицах В/К Со II = = —и)АР-, Р = — 1/ЗЛ кк, — след тензора упругих напряжений юа — дилатационный объем дефекта А ю — энергия Юнга. [c.80]
Здесь Опов — адсорбированный поверхностью атомарный слой кислорода А1р+1 — решеточный алюминий — алюминиевая вакансия, несущая положительный заряд п+ /г,+ — дырка в валентной зоне е — электрон в зоне проводимости. [c.80]


Вернуться к основной статье


© 2025 chem21.info Реклама на сайте