Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English
При изменениях агрегатного состояния вещества и при аллотропных переходах изменение энтальпии равно по величине, но обратно по знаку теплоте соответствующего превращения (плавление, кипение, превращение из одной модификации в другую). Наконец, в случае химической реакции изменение энтальпии равно взятому с обратным знаком тепловому эффекту реакции, проведенной при постоянной температуре и постоянном давлении.

ПОИСК





Термодинамические величины. Энтропия и энергия Гиббса

из "Общая химия Издание 22"

При изменениях агрегатного состояния вещества и при аллотропных переходах изменение энтальпии равно по величине, но обратно по знаку теплоте соответствующего превращения (плавление, кипение, превращение из одной модификации в другую). Наконец, в случае химической реакции изменение энтальпии равно взятому с обратным знаком тепловому эффекту реакции, проведенной при постоянной температуре и постоянном давлении. [c.197]
Энтальпия, как я внутренняя энергия, характеризует энергетическое состояние вещества, но включает энергию, затрачиваемую на преодоление внешнего давления, т. е. на работу расширения. Подобно внутренней энергии, энтальпия определяется состоянием системы и не зависит от того, каким путем это состояние достигнуто. В случае газов различие между А11 и ДЯ в ходе того или иного процесса может быть значительным. В случае систем, не содер-жаши.х газов, изменения внутренней энергии и энтальпии, сопровождающие процесс, близки друг к другу. Это объясняется тем, что изменения объема (АУ) при процессах, претерпеваемых веществами в конденсированных (т. е. в твердом или в жидком) состояниях, обычно очень невелики, и величина РАУ мала в сравнении с АН. [c.197]
Как уже говорилось в 65, макросостояние системы тем болег вероятно, чем большим числом микросостояний оно может осуществиться. Обычно число микросостояний, отвечающих тому или иному макросостоянию системы, очень велико. Это связано с тем, что в макроскопических количествах вещества число частиц колоссально велико, а их положения и скорости при обычных температурах чрезвычайно разнообразны. [c.197]
Наименьшую энтропию имеют идеально правильно построенные кристаллы при абсолютном нуле. Энтропия кристалла, в структуре которого имеются какие-либо неправильности, уже при абсолютном нуле несколько больше, так как нарушения идеаль юсти могут реализоваться не единственным способом. С повышением температуры энтропия всегда возрастает, так как возрастает интенсивность движения частиц, а следовательно, растет число способов их расположения. Возрастает она также при превращении вещества из кристаллического состояния в жидкое и, в особенности, при переходе из жидкого состояния в газообразное. Изменяется энтропия и при протекании химических процессов. Эти изменения обычно особенно велики в случае реакций, приводящих к изменению числа молекул газов увеличение числа газовых молекул приводит к возрастанию энтропии, уменьшение — к ее понижению. [c.198]
Подобно внутренней энергии и энтальпии, энтропия зависит только от состояния системы. Но, в отличие от этих двух функций, связь изменения энтропии с теплотой зависит от способа гфоведе-ния процесса — от его скорости. [c.198]
Как уже говорилось, в ходе того или иного процесса соотношение между теплотой и производимой работой может быть различным. Только разность этих величин, равная изменению внутренней энергии системы, не зависит от способа осуществления процесса. При быстром его проведении работа бывает малой, а при медленном она возрастает. При бесконечно медленном осуществлении процесса — при проведении его бесконечно малыми шагами от одного состояния равновесия к следующему, бесконечно близкому к предыдущему, — работа принимает максимально возможное значение. Такое проведение процесса называется термодинамически обрат и м ы м, или просто обратимым . [c.198]
В ряде случаев к обратимому проведению процесса можно приблизиться в экспериментальных условиях с высокой точностью-В лаборатории можио практически обратимо проводить окислительно-восстановительные реакции в гальванических элементах (см. 98), плавление твердого тела, испарение жидкости. [c.198]
С помощью этого уравнения можно определить, например, изменение энтропии при плавлении и кипении веществ. [c.199]
Последнее уравнение показывает, что при поглощении некоторого количества теплоты энтропия системы возрастает тем сильнее, чем ниже температура, при которой поглощается теплота. Это можно пояснить следующим образом. Подведем одно и то же количество теплоты к двум одинаковым порциям данного вещества. При этом пусть одна из порций находится при низкой температуре, например 1 К, а другая — при высокой температуре, например 1000 К. Ясно, что относительное возрастание скорости движения частиц и увеличениа степени их неупорядоченности, — а следовательно, и возрастание энтропии — в первом случае будет больше, чем во втором. [c.199]
Энтропия имеет размерность энергии, деленной на температуру выражают ее обычно в Дж/К. [c.199]
Как показывается в термодинамике, можно ввести такие функции, которые отражают влияние на направление протекания процесса как тенденции к уменьшению внутренней энергии, так и тенденции к достижению наиболее вероятного состояния системы. Знак изменения подобной функции при той или иной реакции может служить критерием возможности самопроизвольного протекания реакции. Для изотермических реакций, протекающих прн постоянном давлении, такой функцией является энергия Гиббса С, называемая также изобарно-изотермическим потенциалом, изобарным потенциалом или свободной энергией при постоянном давлении. [c.199]
Полезной работой называется вся производимая в ходе при-цесса работа, за вычетом работы расширения PAV. [c.200]
Можно показать, что в условиях постоянства температуры и давления реакции протекают самопроизвольно в сторону уменьшения энергии Гиббса. Поскольку ДС равно по величине, но обратно по знаку максимальной полезной работе процесса, то сказанное можно сформулировать иначе самопроизвольно могут протекать только те реакции, за счет энергии которых можно совершать полезную работу. [c.200]
Эти приближенные равенства показывают, что при низких температурах критерием направления самопроизвольного протекания реакции в первом приближении может служить знак теплового эффекта реакции, а при высоких — знак изменения энтропии. Это означает, что при низких температурах самопроизвольно протекать могут экзотермические реакции, а при высоких — реакции, сопровождающиеся увеличением энтропии. [c.200]
К сказанному необходимо добавить, что отрицательное значение AG той или иной реакции указывает именно только на возможность ее протекания. В действительности реакция может при этом и не наблюдаться. Дело в том, что скорость ее может быть малой тогда, несмотря на соблюдение условия AG О, реакция практически не будет протекать. В этих случаях для увеличения скорости реакции необходимо подобрать катализатор. Такое положение особенно часто наблюдается при низких температурах. [c.200]


Вернуться к основной статье


© 2024 chem21.info Реклама на сайте