ПОИСК Статьи Рисунки Таблицы Диссоциация молекул под действием электронного или ионного удара из "Курс физической химии (том 2)" Количества энергии, которыми обмениваются частицы, могут быть легко рассчитаны на основании закона сохранения количества движения и энергии. В результате столкновения может происходить ионизация атомов и молекул, а также диссоциация молекул на атомы. [c.72] Рассмотрим сначала обмен кинетическими энергиями упру гих частиц при центральном ударе. Пусть гп1 — масса первой частицы, VI — скорость ее до удара, 1 — скорость после удара /Иг —масса второй частицы, Ог —скорость ее до удара, Ыз — после удара. Согласно закону сохранения энергии, сумма кине тических эцергий частиц до удара равна сумме кинетических энергий частиц после удара, т. е. [c.72] Так как масса электрона очень мала, он не может при соударении с молекулой передать ей свою кинетическую энергию и повысить ее вращательную или колебательную энергию. Для перехода кинетической энергии поступательного движения электрона в колебательную энергию молекулы наиболее выгоден удар вдоль оси молекулы. Но вследствие невыгодного соотношения масс даже при таком ударе молекуле может быть передана, как уже было показано выше, лишь небольшая доля кинетической энергии электрона. Несмотря на это, при некоторых обстоятельствах переход кинетической энергии поступательного движения электрона в колебательную энергию молекулы, с которой он сталкивается, оказывается возможным. Электрон своим электрическим полем может так изменить внутреннее поле молекулы, что произойдет изменение ее колебательного состояния. Опыт показал, что электроны, обладающие энергией 5 эв, возбуждают колебательные кванты молекул азота и окиси углерода. причем вращательное движение молекул не изменяется. [c.73] Если считать, что возбуждаются лишь первые колебательные кванты, то расчет показывает, что вероятность возбуждения азота равна 1/100, а возбуждения окиси углерода — 1/30. Величины же колебательных квантов этих молекул почти одинаковы. Различие вероятностей возбуждения указанных молекул объясняется тем, что молекула окиси углерода обладает собственным дипольным моментом, что увеличивает взаимодействие ее с электроном. [c.74] Исходя из классических представлений, переход кинетической энергии поступательного движения электрона в энергию электронного возбуждения атома или молекулы можно рассматривать как неупругий удар. Удар, при котором энергия поступательного движения будет переходить во внутреннюю энергию, является неупругим. При неупругом ударе деформация соударяющихся тел увеличивается до тех пор, пока скорости их не станут одинаковыми (т. е. Ц1 = и2 = и), после чего шары перестанут давить друг на друга и будут двигаться вместе. [c.74] И если при этом первая частица — электрон, а вторая — молекула, то т1 Ст2 и, следовательно, при неупругом ударе р=1, т. е. вся энергия электрона может целиком перейти в энергию электронного возбуждения атома или молекулы. Опыт показывает, что такой переход подчинен квантовым законам. Он возможен только тогда, когда энергия ударяющего электрона равна той энергии, которая необходима для перевода электрона в молекуле из заданного в любое другое состояние, разрешенное квантовыми условиями отбора. Столкновения между электронами и атомами или молекулами, которые ведут к возбуждению атомов или молекул за счет кинетической энергии электронов, называются ударами первого рода. Франк и Герц исследовали столкновения электронов с атомами и на основании результатов исследований разработали удобные методы определения резонансных, критических и ионизационных потенциалов атомов. [c.75] Величина вероятности возбуждения существенно зависит от природы атомов и характера термов в них. Возбуждающее действие электронного удара более эффективно, чем действие света. Это объясняется тем, что электрическое поле электрона снимает запреты с переходов. Например, правило сохранения мультиплетности А5 = 0 при бомбардировке молекулы электронами заменяется менее жестким правилом А5 = 0, 1. [c.76] Это правило получается как следствие возможности обмена местами соударяющихся электронов, благодаря чему электронный спин может или остаться прежним, или измениться на - -1 или на —1. Вероятность ионизации под действием электронного удара максимальна при энергии электронов в пределах от 100 до 00 эв и равна обычно нескольким десяткам процентов. [c.76] При бомбардировке молекулы электронами возможны различные процессы ионизации и диссоциации. До сих пор нет теории, которая позволила бы рассчитать вероятность того или иного процесса возбуждения молекулы или ее распада. Столкновение электронов, обладающих низкой энергией, с молекулами приводит обычно к переходу молекулы на более высокие вращательные, вибрационные или электронные энергетические уровни. При повышении скорости движения электронов наступает момент, когда энергия ударяющего электрона оказывается достаточной для ионизации молекулы. При дальнейшем повышении энергии электронов возбуждение ионизированной молекулы может привести к диссоциации, в результате которой появляются ионы с меньшей массой, а также нейтральные осколки молекулы. Потенциал, соответствующий наименьшей энергии электронов, при которой в результате столкновения электрона с молекулой происходит диссоциация молекулы с образованием ионов, носит название потенциала появления. [c.76] Диссоциация молекулы под действием удара электрона обычно следует непосредственно за возбуждением и похожа на рассмотренный уже процесс фотодиссоциации. В обоих случаях происходит переход молекулы или на кривую отталкивания, или в такую область кривой устойчивого возбуждения, в которой энергия молекулы оказывается больше энергии диссоциации на соответствующие продукты. [c.77] Полученное значение энергии связи С—Н достоверно с точностью до 0,2 эв и соответствует величине 101 4,5 ккал/моль. Эта величина близка к величине 103 ккал/моль, вычисленной теоретически, а также приблизительно совпадает со средним значением энергии связи, найденным кинетическим и фотохимическим методами, которые дают значения соответственно 108 и 94,8 ккал/моль. [c.78] Образование отрицательных ионов наблюдается во многих газах (например, в NH3, N2O, SO2, H2S, Н2О), при этом образуются ионы NH-, 0 , S0, HS- и HQ-. [c.78] При столкновении электронов с возбужденными молекулами возможна передача энергии возбуждения молекулы электрону, в результате чего переход молекулы в нормальное состояние не сопровождается излучением (удар второго рода). [c.78] Вернуться к основной статье