Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English
Одно из возможных применений закона Харди—Вайнберга состоит в том, что он позволяет рассчитать некоторые из частот генов и генотипов в случаях, когда не все генотипы могут быть идентифицированы вследствие доминантности некоторых аллелей. Альбинизм у человека обусловлен довольно редким рецессивным геном. Если аллель нормальной пигментации обозначить А, а аллель альбинизма-а, то генотип альбиносов будет аа, а генотип нормально пигментированных людей-ЛЛ и Аа. Предположим, что в какой-то человеческой популяции частота альбиносов составляет 1 на 10000. Согласно закону Харди— Вайнберга, частота гомозигот аа равна q таким образом, q = 0,0001, откуда q = ]/0,0001 = 0,01. Из этого следует, что частота нормального аллеля равна 0,99. Частоты генотипов нормально пигментированных людей составляют р = 0,99 = 0,98 для генотипа АА и 2pq = = 2 0,99 0,01 й 0,02 для генотипа Аа.

ПОИСК





Мутации

из "Современная генетика Т.3"

Одно из возможных применений закона Харди—Вайнберга состоит в том, что он позволяет рассчитать некоторые из частот генов и генотипов в случаях, когда не все генотипы могут быть идентифицированы вследствие доминантности некоторых аллелей. Альбинизм у человека обусловлен довольно редким рецессивным геном. Если аллель нормальной пигментации обозначить А, а аллель альбинизма-а, то генотип альбиносов будет аа, а генотип нормально пигментированных людей-ЛЛ и Аа. Предположим, что в какой-то человеческой популяции частота альбиносов составляет 1 на 10000. Согласно закону Харди— Вайнберга, частота гомозигот аа равна q таким образом, q = 0,0001, откуда q = ]/0,0001 = 0,01. Из этого следует, что частота нормального аллеля равна 0,99. Частоты генотипов нормально пигментированных людей составляют р = 0,99 = 0,98 для генотипа АА и 2pq = = 2 0,99 0,01 й 0,02 для генотипа Аа. [c.115]
Одно интересное следствие из закона Харди—Вайнберга состоит в том, что едкие аллели присутствуют в популяции главным образом в гетерозиготном, а не в гомозиготном состоянии. Рассмотрим приведенный выше пример с альбинизмом. Частота альбиносов (генотип аа) равна 0,0001, а частота гетерозигот-0,02. Частота рецессивного аллеля а у гетерозигот составляет половину частоты гетерозигот, т.е. 0,01. Следовательно, в гетерозиготном состоянии находится примерно в 100 раз больше рецессивных аллелей а, чем в гомозиготном. [c.115]
Обратная ситуация возникает в настоящее время в человеческой популяции в отношении рецессивных летальных заболеваний, которые научились теперь лечить. Примером может служить фенилкетонурия (ФКУ). Частота этого аллеля оставляет 0,006. Даже если бы все гомозиготы излечивались и размножались столь же эффективно, как и нормальные люди, частота гена ФКУ возрастала бы очень медленно, а частота гомозигот по этому гену-еще медленнее. Если все индивидуумы, страдающие ФКУ, будут излечиваться, то частота гена ФКУ за одно поколение изменится от 0,06 до 0,006036 ( 1 = + q ). Разумеется, если излечиваются не все больные или если у излечившихся число детей в среднем меньше, чем у здоровых, то частота аллеля ФКУ будет увеличиваться еще медленнее. [c.116]
Из этого следует, что фенотипы, определяемые рецессивными генами, у самцов встречаются чаще, чем у самок. Если частота сцепленного с полом рецессивного аллеля равна q, то частота определяемого им фенотипа будет равна q для самцов и q для самок. Отношение этих двух величин составляет q/q = i/q чем меньше значение q, тем выше отношение частоты определяемого рецессивным геном фенотипа у самцов к его частоте у самок. Частота рецессивного сцепленного с полом аллеля, вызывающего дальтонизм у людей (неспособность различать красный и зеленый цвета), составляет 0,08 следовательно, этот дефект встречается у мужчин в 1/0,08 = 12,5 раз чаще, чем у женщин. Частота рецессивного гена, определяющего наиболее распространенную форму гемофилии, равна 0,0001. В соответствии с законом Харди—Вайнберга следует ожидать, что гемофилия у мужчин встречается в 1/0,0001 = = 10000 раз чаще, чем у женшцн (и при этом у обоих полов весьма редко-с частотой 1 на 10000 у мужчин и 1 на 100 млн. у женщин). [c.117]
Закон Харди—Вайнберга в генетике аналогичен первому закону Ньютона в механике, который гласит, что любое тело сохраняет состояние покоя или равномерного прямолинейного движения, пока действующие на него силы не изменят это состояние. Реальные тела всегда подвергаются действию внешних сил, но первый закон Ньютона служит отправной точкой для применения других законов механики. Закон Харди—Вайнберга гласит, что при отсутствии возмущающих процессов частоты генов не изменяются. Однако процессы, изменяющие частоты генов, постоянно происходят в популяциях, и без них бы не было эволюции. Закон Харди—Вайнберга-это отправная точка, из которой мы должны исходить, рассчитывая частоты генов, изменяющиеся под влиянием этих процессов. [c.117]
Первым мы рассмотрим процесс мутирования. Хотя мутации генов и хромосом служат единственным источником всей генетической изменчивости, происходят они с очень низкой частотой./Мутации-процесс чрезвычайно медленный, так что сами по себе они изменяют генетическую структуру популяции с очень малой скоростью. Если бы мутации были единственным процессом, обусловливающим эволюционные изменения в популяциях, то эволюция протекала бы невероятно медленно.л Это основной вывод, который следует из произведенных ниже рассуждений. [c.117]
Предположим, что существуют два аллеля одного локуса, и А 2, и что в результате мутации А превращается в А2 с частотой и на одну гамету за одно поколение. Предположим также, что в начальный момент времени частота А1 составляет р . В следующем поколении доля и всех аллелей А превращается в результате мутаций в аллели Л2. Частота аллеля А в следующем поколении (р ) будет равна его частоте в предьщущем поколении (р ) минус частота мутировавших аллелей (ир ), т.е. [c.118]
Поскольку величина (1 — и) меньше единицы, ясно, что с течением времени р, уменьшается. Если этот процесс продолжается неограниченно долго, частота аллеля А1 стремится к нулю. Этот результат интуитивно очевиден частота аллеля А постепенно убывает, потому что в каждом поколении какая-то доля аллелей А в результате мутаций превращается в аллели А2. [c.118]
При этом скорость изменения частоты аллеля очень мала. Например, если темп мутирования составляет и = 10 на одну гамету за одно поколение, что характерно для эукариот, то для того, чтобы изменить частоту аллеля А от 1 до 0,99, потребуется 1000 поколений, чтобы изменить его частоту от 0,50 до 0,49-2000 поколений, а для изменения частоты от 0,10 до 0,09-10000 поколений. Вообще, чем меньше исходная частота аллеля, тем больше времени требуется, чтобы снизить ее на заданную величину (0,01 в нашем примере). [c.118]
Модель мутаций, согласно которой один генетический вариант переходит в другой при отсутствии обратных мутаций, в ряде случаев хорошо соответствует действительности это относится, например, к хромосомным инверсиям, так как любая последовательность генов с определенной частотой может превратиться в инвертированную, но крайне маловероятно, чтобы в результате инверсии точно восстановилась исходная последовательность. Мутации генов, однако, часто бывают обратимы аллель А2 может мутировать обратно в аллель А . [c.118]
Следует отметить еще два обстоятельства. Во-первых, частоты аллелей обычно не находятся в состоянии, отвечающем равновесию между прямыми и обратными мутациями, потому что на них влияют и другие процессы. В частности, естественный отбор может благоприятствовать одному аллелю в ущерб другому равновесные частоты аллелей определяются при этом, как мы увидим в гл. 24, взаимодействием между мутациями и отбором. Во-вторых, при наличии прямых и обратных мутаций изменение частот аллелей происходит медленнее, чем в том случае, когда мутации идут только в одном направлении, поскольку обратные мутации частично компенсируют изменения частоты аллелей в результате прямых мутаций. Это еще раз подтверждает сказанное выше для того чтобы мутации сами по себе привели к сколько-нибудь значительному изменению частот аллелей, требуется очень много времени. [c.119]


Вернуться к основной статье


© 2025 chem21.info Реклама на сайте