Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English
Фосфор, как и азот, — важнейший элемент питания растений. Он поглощается ими в виде высшего окисла РО] и не изменяется, включаясь в органические соединения. В растительных тканях концентрация фосфора составляет 0,2—1,3% от сухой массы растения.

ПОИСК





Значение серы в обмене веществ

из "Физиология растений"

Фосфор, как и азот, — важнейший элемент питания растений. Он поглощается ими в виде высшего окисла РО] и не изменяется, включаясь в органические соединения. В растительных тканях концентрация фосфора составляет 0,2—1,3% от сухой массы растения. [c.236]
В растительных тканях фосфор присутствует в органической форме и в виде ортофосфорной кислоты и ее солей. Он входит в состав белков (фосфопротеинов), нуклеиновых кислот, фосфолипидов, фосфорных эфиров сахаров, нуклеотидов, принимающих участие в энергетическом обмене (АТР, NAD+ и др.), витаминов и многих других соединений. [c.237]
Фосфор играет особо важную роль в энергетике клетки, поскольку именно в форме высокоэнергетических эфирных связей фосфора (С—О Р) или пирофосфатных связей в нуклеозидди-, нуклеозидтрифосфатах и в полифосфатах запасается энергия в живой клетке. Эти связи обладают высокой стандартной свободной энергией гидролиза (например, 14 кДж/моль у глюкозо-6-фосфата и АМР, 30,5 — у ADP и АТР и 62 кДж/моль — у фосфоенолпирувата). Это настолько универсальный способ запасания и использования энергии, что почти во всех метаболических путях участвуют те или иные фосфорные эфиры и (или) нуклеотиды, а состояние адениннуклеотидной системы (энергетический заряд) — важный механизм контроля дыхания (см. 4.4.3). [c.237]
В форме стабильного диэфира фосфат входит составной частью в структуру нуклеиновых кислот и фосфолипидов. В нуклеиновых кислотах фосфор образует мостики между нуклеози-дами, объединяя их в гигантскую цепочку. Фосфат обусловливает гидрофильность фосфолипида, тогда как остальная часть молекулы липофильна. Поэтому на границе раздела фаз в мембранах молекулы фосфолипидов ориентируются полярно, фосфатными концами наружу, а липофильное ядро молекулы прочно удерживается в липидном бислое, стабилизируя мембрану. [c.237]
Еще одной уникальной функцией фосфора является его участие в фосфорилировании клеточных белков с помощью протеинкиназ. Этот механизм контролирует многие процессы метаболизма, так как включение фосфата в молекулу белка приводит к перераспределению в ней электрических зарядов и вследствие этого к модификации ее структуры и функции. Фосфорилирование белков регулирует такие процессы, как синтез РНК и белка, деление, дифференцировка клеток и многие другие. [c.237]
Значительные количества фитина (0,5 — 2% на сухую массу) накапливаются в семенах, составляя до 50% от общего фосфора в них. [c.238]
Радиальное передвижение фосфора в зоне поглощения корня до ксилемы происходит по симпласту, причем его концентрация в клетках корня в десятки — сотни раз превышает концентрацию фосфата в почвенном растворе. Транспорт по ксилеме осуществляется в основном или полностью в фор.ме неорганического фосфата в этом виде он достигает листьев и зон роста. Фосфор, как и азот, легко перераспределяется между opranaiyiH. Из клеток листьев он поступает в ситовидные трубки и по флоэме транспортируется в другие части растения, особенно в конусы нарастания и в развивающиеся плоды. Аналогичный отток фосфора происходит и из стареющих листьев. [c.238]
Внешним симптомом фосфорного голодания является синевато-зеленая окраска листьев нередко с пурпурным или бронзовым оттенком (свидетельство задержки синтеза белка и накопления сахаров). Листья становятся мелкими и более узкими. Приостанавливается рост растений, задерживается созревание урожая. [c.238]
При дефиците фосфора сниж.ается скорость поглощения кислорода, изменяется активность ферментов, участвующих в дыхательном метаболизме, начинают активнее работать некоторые немитохондриальные системы окисления (оксидаза гликолевой кислоты, аскорбатоксидаза). В условиях фосфорного голодания активируются процессы распада фосфороргани-ческих соединений и полисахаридов, тормозится синтез белков и свободных нуклеотидов. [c.238]
Наиболее чувствительны к недостатку фосфора растения на ранних этапах роста и развития. Нормальное фосфорное питание в более поздний период ускоряет развитие растений (в противоположность азотному), что в южных районах позволяет уменьшить вероятность их попадания под Засуху, а в северных — под заморозки. [c.238]
Сера входит в число основных питательных элементов, необходимых для жизни растения. Она поступает в них главным образом в виде сульфата. Ее содержание в растительных тканях относительно невелико и составляет 0,2—1,0% в расчете на сухую массу. Потребность в сере высока у растений, богатых белками, например у бобовых (люцерна, клевер), но особенно сильно она выражена у представителей семейства крестоцветных, которые в больших количествах синтезируют серосодержащие горчичные масла. [c.238]
Микробиологическое окисление H2S (или FeS) до SO4 сопровождается подкислением почвы. Сульфат относительно лабилен в почвах и частично вымывается. [c.239]
Растения поглощают серу главным образом в форме сульфата. Трансмембранный перенос сульфата осуществляется в котранспорте с Н+ или в обмен на ионы НСО3 . Менее окисленные (SO2) или более восстановленные (H3S) неорганические соединения серы токсичны для растений. Очень слабо воспринимают растения и органические соединения (аминокислоты), содержащие восстановленную серу. [c.239]
Содержание, формы и транспорт серы в растениях. Сера содержится в растениях в двух основных формах - окисленной (в виде неорганического сульфата) и восстановленной. Абсолютное содержание и соотношение окисленной и восстановленной форм серы в органах растений зависит как от активности протекающих в них процессов редукции и ассимиляции сульфата, так и от концентрации 804 в питательной среде. [c.240]
Часть поглощенной растением серы задерживается в сульфатном пуле корней, возможно, в форме Са804 или метаболического сульфата, вновь образующегося в результате вторичного окисления восстановленной серы. Основная же часть сульфата перемещается из корней в сосуды ксилемы и с транспирационным током переносится к молодым растущим органам, где она интенсивно включается в обмен и теряет подвижность. [c.240]
Из листьев сульфат и восстановленные формы серы (серосодержащие аминокислоты, глутатион) могут перемещаться по флоэме как акропетально, так и базипетально в растущие части растений и в запасающие органы. В семенах сера находится преимущественно в органической форме, а в процессе их прорастания частично переходит в окисленную. Редукция сульфата и синтез серосодержащих аминокислот и белков наблюдается при созревании семян. [c.240]
Доля сульфата в общем балансе серы в тканях может колебаться от 10 до 50% и более. Она минимальна в молодых листьях и резко возрастает при их старении в связи с усилением процессов деградации серосодержащих белков. [c.240]


Вернуться к основной статье


© 2025 chem21.info Реклама на сайте