Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связи валентные кратные

    Вопросы для самопроверки 1. Что такое химическая связь Каковы причины ее образования 2. Какие количественные характеристики химической связи известны Как влияет на тип связи электроотрицательность элементов 3. Какая химическая связь называется ковалентной Виды ковалентной связи. Как метод валентных связей (ВС) объясняет образование ковалентной связи Какие свойства ковалентной связи известны 4. Как метод ВС объясняет постоянную ковалентность кислорода и фтора и переменную ковалентность фосфора, серы и хлора 5. В чем сущность гибридизации атомных орбиталей Какие виды гибридизации атомных орбиталей известны Как влияет гибридизация атомных орбиталей на пространственную структуру молекул 6. Какая химическая связь называется кратной Что такое а-и п-связь Электроны в каких состояниях принимают участие в образованип а- и п-связи 7. Какие молекулы называются полярными и какие неполярными Что служит мерой полярности молекулы В каких единицах выражают дипольный момент 8. Что такое ионная связь и при какпх условиях она возникает Обладает ли ионная связь направленностью и насыщаемостью 9, В чем сущность метода молекулярных орбиталей (МО) Какие молекулярные орбитали называются связывающими и какие разрыхляющими 10. Какая химическая связь называется металлической 11. Как химическая связь определяет свойства веществ Приведите примеры соответствующих соединений. [c.18]


    Валентные связи. Полярность связей. Кратные связи. Валентные связи реализуются гл. обр. в соединениях, к к-рым приложимы правила классич. валентной химии. В таких соединениях каждый пз соединяющихся атомов предоставляет для образования X. с. один неспаренный электрон, к-рый вместе с неспаренным электроном другого атома образует двухэлектронную связь, аналогичную связи в молекуле [c.315]

    Ароматические углеводороды дают сложные спектры в инфракрасной области. Характеристические частоты ИК-спектров поглощения представлены в работе [59, с. 40—41]. Особо важными для определения ароматических углеводородов в сложных смесях считают диапазон 1600—1610 см [61]. Согласно [60, с. 43—44], для определения ароматических углеводородов специфичны следующие диапазоны частот, соответствующих деформационным колебаниям Сар—Н, учитывающие тип замещения пять соседних атомов водорода отвечают диапазонам 750 и 700 см , четыре — 750 см , три — 780 см , два — 830 см->, один атом водорода — 880 см . Валентным колебаниям кратных связей Сар—Сар соответствуют частоты 1600, 1580, 1500 и 1450 см . Используя ИК-спектры, можно анализировать смеси изомеров как в ряду гомологов бензола, так и нафталина. [c.134]

    Синтетические методы получения высокополимеров из низкомолекулярных веществ делятся на методы полимеризации и поликонденсации. Полимеризации могут подвергаться только такие вещества (мономеры), в молекулах которых содержатся кратные связи (или циклические группировки). За счет этих связей (или за счет раскрытия цикла) у молекул исходного вещества (или веществ) образуются свободные валентности, которыми они соединяются между собой в макромолекулы. [c.560]

    При неизменном валентном состоянии межъядерное расстояние для данного типа связи практически постоянно в различных соединениях. Так, во всех алифатических соединениях d( — С) лежит в пределах от 154 до 158 пм, в ароматических соединениях— от 139 до 142 пм. При переходе от одинарной связи к кратной межъядерные расстояния сокращаются, что обусловлено упрочнением связи. Если d( —С) 154, то d( — ) 134, а d( = ) 120 пм. [c.58]

    Строение атома и периодический закон 58 13. Характер изменения свойств элементов в периодах и группах периодической системы 61 14. Потенциал ионизации, сродство к электрону, электроотрицательность 63 15. Природа химической связи и валентность элементов 67 16. Постоянная и переменная валентность 72 17. Донорно-акцепторная связь 78 18. Одинарные и кратные связи. Ковалентная, полярная и ионная [c.381]

    Понятие валентность появилось в начале XIX в. после открытия закона кратных отношений. В это время валентность элементов устанавливалась экспериментально по стехиометрическому составу соединений. В качестве стандарта были выбраны одновалентный водород (валентность по водороду) и двухвалентный кислород (валентность по кислороду). С открытием периодического закона была показана связь валентности с положением элемента в периодической системе. Высшая валентность элемента определяется номером группы периодической системы, в которой он находится. С помощью подобных представлений удалось систематизировать фактический материал в химии, предсказать состав и синтезировать неизвестные соединения. [c.78]

    При трактовке пространственного расположения валентностей углеродного атома классическая стереохимия исходит из тетраэдрической модели (т. е. гибридизации sp ) валентная симметрия простой связи отвечает двум тетраэдрам с общим углом, двойной связи —двум тетраэдрам с общим ребром, а тройной —двум тетраэдрам с общей плоскостью. Отсюда следует, что отдельные валентности кратной связи имеют изогнутую форму ( банановые связи), т. е. ни одна из них не проходит вдоль линии кратчайшего расстояния между ядрами обоих атомов. [c.548]


    Ненасыщенные соединения для Тиле явились исходными при разработке теории парциальных валентностей Эта теория исходит из той предпосылки, что состояние ненасыщенности органических соединений всегда обусловлено присутствием в них кратной связи. В таких соединениях, которые, подобно этилену, содержат двойную связь, валентности между атомами углерода не насыщают друг друга полностью, но каждый из двух атомов сохраняет свободной часть сродства, парциальную валентность. Этиленовую связь Тиле поэтому представлял схемой  [c.313]

    В неорганических соединениях могут существовать координационные числа вплоть до 14, значения 4, 5,6 и 8 являются наиболее распространенными, а валентность меняется от —2 до +8. Наконец, в неорганических соединениях встречаются такие типы связей,, которые не имеют аналогий в органической химии, где обычно-преобладают а-связи или кратные рп—ря-связи. [c.217]

    Непредельные, или ненасыщенные, углеводороды—это углеводороды, в молекуле которых имеются углеводородные атомы, затрачивающие на связь с соседними атомами углерода более одной валентности — две или три, что в структурных формулах изображается соответственно двумя илп тремя черточками. Эти двойные и тройные связи называются кратными. По числу и характеру кратных связей классификация непредельных углеводородов может быть представлена схемой  [c.50]

    Во всех случаях локанты, обозначающие свободную валентность радикалов (т. е. место присоединения), должны быть по возможности наименьшими, поскольку это совместимо с любой фиксированной нумерацией системы. Они имеют приоритет над локантами кратных связей и любых заместителей. Например, в структуре (4) нафталиновое кольцо старше циклогексенового, [c.124]

    На основе теории типов Жерара зародилось представление о строго определенной, дискретной, квантованной характеристике атома — его валентности. Обнаружение дискретности химического сродства, распадающегося на единицы валентности, ознаменовало смелое проникновение химии в микромир. Учение о валентности стало тем фундаментом, на котором было воздвигнуто здание структурной химии с его формальным языком. Основным постулатом химического формализма в органической химии явилось представление о постоянной четырехвалентности углерода. При помощи его удалось найти удовлетворительные валентные схемы для непредельных и ароматических соединений, используя понятие кратной связи. [c.29]

    Обратимся теперь к рассмотрению других спектров. Обсудим вначале ИК-спектр. В коротковолновой части спектра (А, < 6,5 мкм ч > 1500 см ) наблюдается поглощение только на двух участках при 1800 —1600 см" и при 3100—2850 см . На первом участке поглощения, соответствующем валентным колебаниям двойных связей, имеются две сильные полосы при 1700 и 1630 СМ , что указывает на наличие в молекуле связей С=0 и С=С. Высокая интенсивность полосы 1630 см" и пониженные частоты полос обеих кратных связей позволяют предположить присутствие в молекуле фрагмента С=С—С=0. Наличие на этом же участке поглощения полосы при 1730 СМ вряд ли следует связывать с присутствием в молекуле другой карбонильной группы,-не входящей в состав фрагмента С=С—С=0, так как эта полоса недостаточно интенсивна. С другой стороны, появление сателлит-ной полосы наряду с основной карбонильной полосой является нередким явлением в случае а,р-непредельных карбонильных соединений. Происхождение такой полосы может быть связано либо с проявлением резонанса Ферми, либо с отражением в спектре неоднородности конформационного состава карбонильного соединения. Второй участок поглощения в коротковолновой части спектра, представляющий собой систему перекрывающихся полос средней интенсивности, соответствует проявлению валентных колебаний С—Н-связей. Поскольку основное поглощение приходится на район ниже 3000 см , следует считать, что большинство атомов Н сосредоточено при тетраэдрических атомах углерода. Поскольку в спектре нет полос [c.219]

    Присоединение радикала по кратной связи может идти двумя путями. Радикал может образовать ковалентную связь с реакционным атомом субстрата (сг-комплекс), тогда реакция протекает по схеме (18.1). Образование другого возможного продукта идет через так называемый я-комплекс. Для того чтобы представить структуру я-комплекса, рассмотрим приближение реагента А—В (А—В — молекула или радикал) к субстрату, содержащему кратные связи. Предположим, что валентный электрон реагента находится на р -орбитали [А(Рг)—В]. Тогда приведенная ниже схема иллюстрирует образование п-комплекса. [c.169]

    В случаях соединений с кратными связями при адсорбции на свободной валентности происходит разрыв двойной связи и образование адсорбированного радикала  [c.166]

    Другим существенным недостатком книги является использование в ней для объяснения некоторых важных особенностей строения и реакционной способности соединений с кратными связями теории резонанса валентных структур . Несостоятельность и бесплодность этой теории уже были доказаны многими советскими и зарубежными химиками и физиками. Поэтому в русском переводе схемы реакций и объяснения на основе теории резонанса были в большинстве случаев опущены как ошибочные или заменены схемами, общепринятыми в настоящее [c.1221]

    В этом случае радикал распадается на новый радикал и молекулу с кратной связью или атомом переменной валентности. [c.65]

    Из основных поло> ений цепной теории следует, что при взаимодействии моновалентного радикала с валентно-насыщенной молекулой, содержащей кратную связь, возможны два пути превращения 1) присоединение по месту кратной связи с образованием нового моновалентного радикала и 2) образование двух радикалов — моно- и бивалентного [c.115]

    При разрыве кратной связи или раскрытии цикла молекулы своими свободными валентностями соединяются с другими такими же активированными молекулами, образуя полимерные молекулы. [c.198]

    Если данный атом углерода не имеет кратных (двойных или тройных) связей, то каждый из этих четырех валентных электронов (25, 2рЗ) образует по электронной паре с электроном взаимодействующего атома, причем вследствие гибридизации связей ( 18) все четыре электрона по ряду свойств (энергия связи, межатомные расстояния и некоторые другие) становятся равноценными. Такие связи называют о-связями (сигма-спязи). При одинаковых заместителях а-связи атома углерода располагаются в пространстве под тетраэдрическим углом 109°28.  [c.66]

    Окраска вещества связана с его способностью поглощать из видимой части спектра (в интервале длин волн от 800 до 400 нм) только лучи с определенными длинами волн, т. е. с определенной энергией. При этом непоглощенные лучи спектра, являясь дополнительными к поглощенным, воспринимаются как видимые и вещество (тело) становится окрашенным. Поглощение света молекулой красителя определяется состоянием ее электронов. Так как энергия поглощенных лучей расходуется на возбуждение валентных электронов, состояние которых может быть различным (а- или л-электроны), то, изменяя химическое строение молекулы, можно в широком интервале изменять интенсивность и характер поглощения света. Соединения, содержащие кратные связи, поглощают в видимой области или на ее границе, так как входящие в молекулу я-электроны требуют для своего возбуждения меньшей энергии. Поэтому органические красители — это вещества, в состав молекул которых входят ненасыщенные группировки, поглощающие,свет и, следовательно, вызывающие появление окраски хромофоры), и группы, которые увеличивают интенсивность этого поглощения ауксохромы). [c.235]


    Другая разновидность характеристических частот, весьма важных для определения строения органических молекул, — частоты валентных колебаний двойных и тройных связей. В группировках Х = и Х=У, где X и У — атомы С, О и Н, приведенные массы близки, но силовые постоянные существенно различаются в зависимости от числа связевых электронов ( кратности связей) и обнаруживают ясно выраженную зависимость от эффектов сопряжения, приводящих к уменьшению численных значений характеристических частот сопряженных кратных связей по сравнению с изолированными. Интенсивность соответствующих полос [c.15]

    В нач. 20 в. появились представления, согласно к-рым X. с. обусловлена образованием у каждого атома стабильной электронной оболочки, включающей нек-рое магическое число электронов. Для водорода это число равняется 2, для атомов второго периода периодич. системы - 8, для след, периода -18 и т. д. Возможны два способа образования октета (оболочки из 8 электронов) 1) переход одного или неск. электронов от данного атома к другому, так что у обоих атомов возникает октетная оболочка и образуется пара электростатически взаимодействующих ионов (катион и анион) 2) обобществление от каждого атома, участвующего в образовании X. с., по 0ДН01У1У электрону с образованием электронной пары (чему соответствовал валентный штрих в классич. структурной ф-ле) либо по два, три и т. д. электрона с образованием двух или большего числа электронных пар (чему соответствовали валентные штрихи двойных, тройных и т. п. связей см. Кратные связи). [c.234]

    Это твердофазный катализатор, обусловливающий гете оген-ность процесса, развивающегося довольно активно уже при температурах порядка 30—40 °С. Каждый его компонент в отдельности способен возбуждать катионную или анионную полимеризацию. Однако могут быть и растворимые в среде катализаторы, ко орые обеспечивают развитие гомогенного процесса. О механизме возбуждения полимеризации координационными комплексами имеется много различных суждений, однако вопрос этот пока еще недостаточно ясен. Полагают, что мономер, принимающий участие в построении комплекса в качестве лиганда центрального атома металла, структурно изменяется, а соответственно и изменяется его активность изменяется длина его кратных связей, валентные углы, а также поляризация. Иначе говоря, в процессе координирования мономер проходит соответствующую подготовку к полимеризации (рис. П-2). Здесь катализатор сравнен с матрицей, которая связы- [c.80]

    Атом бора имеет три валентных электрона и четыре валентные орбитали. Обычно он использует три орбитали, образуя 5р -гибриды в таких соединениях, как ВРз- Углерод имеет четыре валентных электрона и четыре орбитали. За исключением тех случаев, когда он образует кратные связи, эти орбитали используются для 5р -гибридизации. Атом азота имеет пять валентных электронов и четыре орбитали. Как правило, он образует три связи с другими атомами в структурах с тетраэдрической конфигурацией, а четвертая гибридная 5р -орбиталь у него занята неподеленной электронной парой (разд. 13-3). Углерод и азот способны образовывать двойные и тройные связи в результате я-перекры-вания, обсуждавшегося в разд. 13-4. По сравнению с длиной простой связи длина двойных связей, образуемых этими элементами, сокращается на 13%, а длина тройных связей-на 22%. Прочность кратной связи повыщается благодаря наличию электронов на связывающей молекулярной п-орбитали, возникающей в результате перекрывания атомных я-ор-биталей. Но перекрывание я-типа между орбиталями становится достаточно больщим для возникновения связи только при близком расположении атомов. По этой причине 81 и другие элементы третьего и следующих периодов неспособны образовывать кратные связи. Кремний имеет 10 внутренних электронов по сравнению с 2 в атомах С и N. Отталкивание этих внутренних электронов не позволяет двум атомам 81 сблизиться настолько, насколько это необходимо для достаточного я-перекрывания р-орбиталей и возникновения двойных связей. Несмотря на все попытки химиков синтезировать соединения со связями 81=81 и 81=С, ни одна из них до сих пор не увенчалась успехом. За небольшими исключениями, образование двойных и тройных связей ограничено элементами второго периода, в атомах которых число внутренних электронов не превышает 2. Исключения, к числу которых относятся 8=0, Р=0 и 81=0, объясняются перекрыванием между р- и -орбиталями, этот вопрос будет рассмотрен в разделе, посвященном кремнию. [c.271]

    Для протекания диенового синтеза необходимо, чтобы молекула диена имела цисоидное расположение двойных связей, при котором реагирующие 1,4-угле-родпые атомы наиболее близки друг к другу. Прн этом молекула диена в своей цисоидно-планарной конформации присоединяется к диенофилу по его кратной связи двумя валентностями 1,4-углеродных атомов, т. е, сохраняя относительное пространственное положение заместителей в диенофиле (принцип tju -присое-динения). Так, 1,3-бутадиен при конденсации с малеиновым ангидридом образует Чис-Д -тетрагидрофталевый ангидрид (I), а циклопентадиен,—соответственно, цис-3,6-метилен-Д -тетрагидрофталевый ангидрид (II и III)  [c.344]

    Многие положения концепции В. И. Касаточкина вполне приложимы и к объяснению молекулярной структуры нефтяных асфальтенов. Мы имеем в виду прежде всего такие фундаментальные положения этой точки зрения, как зависимость физических свойств от элементного состава этих соединений, утверждение, что основной структурной единицей (блоком) молекулярного строения является плоская гексагональная атомная сетка или копланарно конденсированные бензольные кольца с алифатическими короткими цепями на периферии этих плоских структурных блоков. Размеры и структура этих плоских структурных блоков могут сильно различаться, так же как могут различаться алифатические цени по числу С-атомов, по степени разветвленности и по количеству и характеру функциональных групп в них. Эти структурные блоки образуют трехмерные молекулы за счет валентных связей посредством боковых цепей. Распределение сопряженных кратных связей в основной структурной углеродоатомной сетке, подобной [c.96]

    Сравнительно устойчивыми являются также частицы с неспаренным р-электроном у атомов, соединенных системой сопряженных кратных связей. Это объясняется тем, что свободный р-электрон и р-электроны системы сопряженных связей образуют единую устойчивую систему. Неспаренный электрон (свободная валентность) в этом случае не локализован у одного атома, а оказывается в той илииноймерерассредоточеннымпосвободному радикалу. Так, в простейшем случае свободного радикала аллила, образующегося из пропилена при отрыве атома Н от его метильной группы, возникает система из трех сопряженных р-электронов, причем свободная валентность в равной степени находится на обоих крайних атомах углерода [c.16]

    Валентнонасышенная молекула мономера может войти в состав некоторой полимерной молекулы только после образования у нее двух свободных валентностей, за счет которых будет осуществляться связь с соседними молекулами полимерной цепи. Возникновение свободных валентностей возможно или в результате размыкания одной из кратных связей, как, например, в случае образования полиметилметакрилата (органическое стекло)  [c.351]

    Для исследования органических соединений используются различные области электромагнитного спектра. Излучение, соответствующее ультрафиолетовой и видимой областям спектра (1000—8000 А), вызывает переходы внешних, валентных, электронов на более высокие энергетические уровни, а также изменение колебательной и вращательной энергии молекул. Поэтому ультрафиолетовые и видимые спектры молекул состоят из широких полос поглощения. Положение полос поглощения, их форма и интенсивность определяются строением молекулы (наличие кратных связей, функциональных групп). В ряде случаев УФ и видимые спектры бырают настолько характерны, что могут служить для идентификации соединений. Многие полосы поглощения в УФ и видимых спектрах имеют очень высокую интенсивность, что позволяет работать с очень малыми количествами веществ. Количественная зависимость между интенсивностью поглощения и концентрацией веществ позволяет применять УФ и видимые спектры в количественном анализе. [c.228]

    Так, нет соединений азота с ковалентностью более четырех, но фосфор образует соединения с пятью ковалентными связями. Примером такого соединения является пентафенилфосфоран (СеН5)5Р, где в образовании химических связей используются 3-, р- и ( -валентные орбитали фосфора. В других соединениях фосфора с ковалентностью равной пяти в кратной связи имеется составляющая Рж— я-типа. К таким соединениям относятся  [c.597]

    Для выявления функциональных групп и кратных связей целесообразно сначала рассмотреть И К -спектр. Сплошное поглощение на участке 3000—2500 см характерис-тичнр для гидроксильной группы карбоновой кислоты. Очень сильная полоса при 1690 M S соответствующая валентным колебаниям связи С=0, указывает на наличие в молекуле кар- [c.220]

    ВИК - спектре соединения наблюдаются полосы фенильной группы (3(160, 3030, 1603, плечо 1590, 1500, 760, 700 см ). В области 1700—1800 см" имеются две полосы средней интенсивности при 1730 и 1783 см . Наличие полос с такими частотами для соединений, не содержащих карбонильной группы, указывает на присутствие в молекуле трехуглеродного цикла с экзо- или эндоциклической двойной связью. В области валентных СН-колебаний нет сильных полос ниже 3000 СМ", что согласуется со структурой, содержащей ароматические, олефиновые или циклопропановые СН-свя-зи. На этом основании мы можем исключить из рассмотрения все варианты структур, кроме содержащих трехчленный цикл с кратной связью. [c.224]


Смотреть страницы где упоминается термин Связи валентные кратные: [c.315]    [c.35]    [c.192]    [c.23]    [c.274]    [c.257]    [c.298]    [c.23]    [c.78]   
Основы общей химии Том 2 (1967) -- [ c.49 , c.55 , c.59 , c.60 ]




ПОИСК





Смотрите так же термины и статьи:

Кратная связь

Кратные свя

Связи кратные

Связь валентная



© 2025 chem21.info Реклама на сайте