Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводы Углекислота

    Ферментативный метод. Наиболее старым методом производства этилового спирта является ферментативный метод. Сущность его заключается в сбраживании крахмало- или сахаросодержащих пищевых продуктов (картофель, зерно, меласса и др.) с помощью бактерий, которые в процессе своей жизнедеятельности перерабатывают углеводы в этиловый спирт и углекислоту. [c.26]

    Важнейшим способом превращения солнечной энергии в формы, доступные для использования живыми организмами, является фотосинтез. В ходе фотосинтеза в листьях растений диоксид углерода (углекислота) и вода превращаются в углевод глюкозу, одну из разновидностей сахаров (см. разд. 25.4) этот процесс сопровождается выделением кислорода  [c.442]


    Вся жизнь на земле в конечном счете зависит от синтеза углеводов за счет усвоения углекислоты из атмосферы. Солнечный свет обеспечивает энергией этот процесс, в целом известный под названием фотосинтеза. Первой стадией фотосинтеза является поглощение фотона пигментами в многоклеточных растениях наиболее важную роль играет хлорофилл-а. Энергия фотона трансформируется в химическую энергию, обеспечивающую протекание реакции СО2—и образование углерод-углеродных связей эта реакция представляет собой восстановительное карбоксилирование, со- [c.216]

    Едва ли нужно говорить о том, что процесс жизнедеятельности растительного организма — это прежде всего процесс возникновения и превращения углеводов, которые составляют основу скелета растения и всех его питательных соков. Фотосинтез углеводов из углекислоты воздуха, осуществляемый растениями, представляет собой источник углеводов для всех живых организмов. Интересно отметить, что многие растения способны синтезировать и специфические производные углеводов — растительные физиологически активные вещества, среди которых достаточно назвать такие важные лекарственные средства, как сердечные гликозиды. [c.8]

    Строение углеводов. Соединения, подобные молочному сахару, были названы углеводами в силу того, что первые известные представители этой группы являлись как бы сочетанием углерода с водой. Такое же сочетание мы встречаем у формальдегида, который по гипотезе Байера является материалом для образования углеводов, а сам в свою очередь образуется в природе в зеленых частях растений из углекислоты и воды с выделением кислорода  [c.51]

    Исходным в генезисе нефти исторически является органический мир крупных водоемов, среда которых насыщена планктоном, водорослями, микроорганизмами и мелкими животными. Погибая, все они образуют слой донного ила (сапропель), в котором начинается первый биохимический этап - преобразование органических жиров и углеводов в углеводороды, углекислоту Oj и воду. По мере уплотнения сапропеля и формирования осадочной породы (с погружением морского дна) происходит второй этап (диагенез) и начинается третий - катагенез. В этот период прекращаются биохимические процессы и начинают интенсивно развиваться химические превращения органического вещества под действием повышающихся температур и давлений (термодеструктивные и термокаталитические процессы). Продуктами этих процессов являются метан и жидкие углеводороды, рассеянные в минеральной породе осадка (микронефть). Соотношение газа и нефти меняется с глубиной погружения осадочной породы, и на глубинах 7-8 км обнаруживается только газ (3-й этап на рис. 1.1). [c.22]

    Особенно четко потребность в восстановителе проявляется, если основным или единственным источником углерода для конструктивных процессов служит СО2 — предельно окисленное углеродное соединение. Для превращения углекислоты в структурные компоненты клетки и клеточные метаболиты необходимо ее восстановление до уровня углеводов, белков, липидов. Это же справедливо и при использовании в качестве источника углерода органических соединений, более окисленных, чем вещества тела, например ацетата. [c.281]

    В описанных условиях проведена серия опытов биосинтеза глюкозы 1,6—С с различной величиной активности углекислоты и с введением отдельных изменений в процесс очистки растительных растворов, содержащих углеводы. Полученные результаты приведены в таблице (см. выше). [c.204]

    Дерево в процессе роста поглощает углекислоту из воздуха и воду из почвы с содержащимися в ней минеральными солями Зеленые растения обладают способностью превращать энергию видимого света солнечных лучей в потенциальную хи мическую энергию органических соединений В листьях деревьев, содержащих зеленый пигмент хлорофилл, идет про цесс фотосинтеза, т е из углекислоты и воды при участии сол нечного света образуется органическое вещество При этом вырабатываются углеводы и другие химические соединения которые, видоизменяясь, служат материалом для построения клеток древесины Этот процесс сходен у всех древесных по род, поэтому органическая часть любой древесины содержит примерно постоянное количество углерода (49,5—51%), водорода (6,1—6,3%), азота (0,1%) и кислорода (почти 44%) [c.12]


    В основе бродильного метода лежит способность кишечных палочек сбраживать углеводы с образованием газообразных продуктов, главным образом водорода и углекислоты. Заданные объемы воды высевают в среду накопления бактерий, подращивают при 37 0,5°С и еще раз высевают их на плотную среду Эндо. дифференцируют после выращивания и определяют по таблице число бактерий группы кишечных палочек. [c.391]

    Энергия большинства живых существ получается за счет специфических окислительных процессов, в которых углеводы, жиры и белки полностью деградируют до углекислоты, аммиака или мочевины. Эти процессы легко протекают при обычных температурах в водных средах, реакция которых близка к нейтральной. [c.282]

    Одним из методов синтеза меченых соединений является биосинтез. Биосинтез широко используется при введении метки в сложные органические вещества природного происхождения (белки, углеводы и т. п.). Простейшим примером является получение меченой глюкозы и других углеводов в процессе фотосинтеза. Освещенные зеленые листья живого растения по мещают в атмосферу меченной по углероду (С) углекислоты. Затем сахар экстрагируют из растений и очищают, используя обычные химические и биохимические процедуры. [c.176]

    Количество и состав основных продуктов фотосинтеза зависят от физиологического состояния растения и окружающей среды. В большинстве случаев преобладающая часть фиксированной углекислоты обнаруживается в виде углеводов (сахарозы и крахмала). Переход углерода в аминокислоты и белки отражает до некоторой степени условия азотного питания растения. При низком парциальном давлении углекислого газа основным продуктом фотосинтеза является гликолевая кислота. [c.282]

    В предыдущей главе были рассмотрены химические реакции, приводящие к наращиванию, удлинению углеродной цепи углеводов. Естественно вслед за этим перейти к таким превращениям сахаров, которые связаны с укорочение.м, расщеплением углеродной цепи молекулы. Необходимо сразу же отметить, что молекулы сахаров могут разрушаться под влиянием самых разнообразных факторов (кислоты, щелочи, температура, радиация, окислители, ферменты и т. д.). При этом возникают смеси всевозможных веществ (углекислота, органические кислоты, оксикислоты, оксосоединения, редуктоны, спирты и т. п,), В настоящей главе мы рассмотрим такие процессы, которые позволяют постепенно, контролируемым образом переходить от высших моноз к низшим, и лишь в меньшей степени будем касаться более глубоких деструкций, а также ферментативных процессов, описанных в обширной биохимической литературе (см., например, [1, 2]). [c.27]

    По мнению Шорыгина и Шорыгиной [25], в живых организмах и растениях происходят постоянные превращения углеводов — этих первичных продуктов ассимиляции углекислоты воздуха в разнообразные циклические соединения, широко представленные в растительном мире смолы, терпены, душистые вещества, тан-нины, красители, стерины и т. д. Авторы считают, что генетическая связь этих циклических соединений с углеводами очевидна —все они образуются в организме растения в результате биохимических превращений углеводов, вероятно, через серию промежуточных процессов. [c.68]

    В обычной лабораторной практике на бумагу можно наносить непосредственно этилацетатные или спиртовые вытяжки из растительного материала, поскольку реакция с ванилином достаточно специфична. Однако при работе с мечеными соединениями, когда помимо содержания катехинов необходимо определить их радиоактивность, возникают дополнительные трудности. Для изучения образования и превращений катехинов обычно используют вводимую в растение фотосинтетическим путем меченную С углекислоту. В этих условиях С будет прежде всего внедряться в ближайшие продукты фотосинтеза (углеводы, органические кислоты. [c.59]

    В семенах клещевины углерод метильной группы ацетата внедряется в состав сахарозы, а углерод карбоксильной группы ацетата входит примерно поровну в состав сахарозы и в углекислоту дыхания. Поскольку ацетат для включения в галловую кислоту должен сначала подвергнуться превращению в сахарозу, остается необъяснимым, почему в чайном растении ацетат оказывается более эффективным предшественником галловой кислоты, чем глюкоза, фруктоза и сахароза. Во всяком случае из полученных данных можно сделать вывод, что в побегах чая, очевидно, существует возможность быстрого превращения ацетата в углеводы [c.139]

    Метод определения основан на осаждении хлора азотнокислым серебром в присутствии азотной кислоты. Избыток азотнокислого серебра оттитровывают роданистым аммонием в присутствии железоаммиачных квасцов, являющихся индикатором. Помимо солей, в крови содержится много органических веществ (белки, углеводы, жиры и др.), которые могут осаждаться, образуя соединения с серебром, а в некоторых случаях восстанавливать его до металла. Поэтому определение хлора в присутствии органических веществ крови вести нельзя и их удаляют окислением (путем нагревания с марганцовокислым калием). Органические вещества при этом окисляются до углекислоты и воды, а марганцовокислый калий восстанавливается частью до двухвалентного марганца, частью— до темнобурой перекиси марганца. Избыток перекиси марганца восстанавливают до солей двухвалентного марганца при помощи глюкозы, которая не мешает определению. Реакции осаждения хлора и титрования избытка азотнокислого серебра идут по следующим уравнениям  [c.247]

    Понятие о фотосинтезе. Ассимиляция зелеными частями растений углекислоты из воздуха (за счет энергии солнечного света и при каталитическом воздействии хлорофилла, стр. 595) с образованием углеводов называется фотосинтезом. Фотосинтез — важнейший процесс природы. Механизм его в последние годы в значительной степени выяснен. [c.321]

    Образование углеводов из воды и углекислоты по суммарному уравнению [c.321]

    Интенсивность включения углекислоты в различные соединения сильно меняется в зависимости от спектрального состава света. При выращивании растений на коротковолновом (синем) свете наблюдалось усиление образования азотистых соединений, прежде всего аминокислот и белков, а синтез углеводов ослаблялся. Если растения выращивали на свету длинноволновой части спектра, резко усиливалось образование углеводов. [c.139]

    Другие примеры взаимных превращений сахаров уже рассматривались при изложении процессов ассимиляции углекислоты в фотосинтетическом цикле, с некоторыми из них дополнительно познакомимся при изучении биохимии дыхания и окис--лительного распада углеводов. Все сказанное показывает, что процессы обмена углеводов очень тесно взаимосвязаны. В зависимости от физиологического состояния растения или от условий его выращивания обмен углеводов в растении может направляться по тому или иному пути — в сторону синтеза или распада тех или иных соединений, что имеет очень большое значение в жизнедеятельности растительных организмов. [c.152]

    Т. е. при полном окислении одной грамм-молекулы глюкозы или какой-либо другой гексозы образуется шесть грамм-молекул СО2 и шесть грамм-молекул воды и выделяется 686 ккал. Однако, так же как и суммарное уравнение фотосинтеза, это общее уравнение дыхания ничего не говорит о промежуточных реакциях и продуктах, которые образуются при распаде углеводов до углекислоты и воды. [c.153]


    Анаэробный распад углеводов с образованием пировиноградной кислоты — первая стадия распада углеводов. При распаде глюкозы до пировиноградной кислоты возникает больщое число промежуточных продуктов и накапливается энергия в макроэргических связях двух молекул АТФ (12 000 кал.Х2 = = 24 000 кал.). Но, как известно, при полном распаде углеводов до углекислоты и воды выделяется 686 000 кал., т. е. при последующем превращении пировиноградной кислоты должно выделиться значительно большее количество энергии, чем на первой стадии распада углеводов. Это и происходит на второй, аэробной, стадии распада углеводов. [c.165]

    Глицин — подвижная аминокислота, служащая исходным продуктом синтеза ряда веществ в организмах. При фотосинтезе меченая углекислота через короткие промежутки времени обнаруживается в составе глицина, который может образоваться также при расщеплении серина, распаде треонина и в ряде других процессов. В свою очередь, глицин участвует в биосинтезе пуриновых оснований, углеводов, глутатиона, а также других аминокислот. [c.249]

    Крахмал. Крахмал является важнейшим резервным углеводом растений. Он образуется из углекислоты, усваиваемой растениями с помощью хлорофилла, и попадает затем в различные части растения, где используется в качестве строительного вещества. В периоды сильной ассимиляции он откладывается в корнях, клубнях и семенах (особенно обильно, например, в картофеле и семенах хлебных злаков). В холодной воде крахмал почти совсем не растворим, но горячая вода растворяет его в значительной степени, причем образуется вязкий раствор, не восстанавливающий фелингову жидкость и при охлаждении застывающий в студнеобразную массу (крахмальный клейстер). Природный крахмал всегда содержит немного фосфора, количество которого в разных видах бывает различным (0,02—0,16%). Этот фосфор, по-видимому, имеет значение для энзиматического распада крахмала. Из продуктов гидролиза картофельного крахмала была выделена глюкозо-6-фосфорная кислота. На основании исследований Макэнна различают две фракции крахмала амилозу и а м и л о-пектин (вещество оболочки). Первая растворяется в воде без образования клейстера и окрашивается иодом в чисто-синий цвет. Амило-пектин, наоборот, с горячей водой образует клейстер и от иода приобретает фиолетовую окраску. Отделение амилопектина может быть осуществлено путем извлечения щелочами или посредством электродиализа отделение амилозы достигается осаждением различными органическими веществами — спиртами (например, амиловым), сложными эфирами, кетонами, меркаптанами, парафинами. [c.454]

    Согласно современным представлениям, фотохимическая стадия Ф. заключается в поглощении хлорофиллом кванта света с переходом хлорофилла в восстановленное состояние вследствие присоединения к нему электрона или водорода из какого-либо восстановителя. Восстановленный хлорофилл с помощью нескольких последовательно действующих ферментов передает электрон или водород, а тем самым и поглощенную энергию на восстановление углекислоты. Что касается химизма фотосинтетиче-ского превращения углерода, то согласно современному представлению первичная фиксация СО2 происходит на углеводе, содержащем пять атомов углерода,— рибулозодифосфате, который при этом распадается с образованием фосфоглицериновой кислоты. Последняя восстанавливается до фосфоглицериново-го альдегида, который конденсируется с фосфодиоксиацетоном и образует фруктозодифосфат, а затем свободные сахара — гексозы, сахарозы и крахмал — в процессе, обратном гликолитиче-скому распаду. Очень важно, что растения могут осуществлять Ф. не только при естественном солнечном свете, но и при искусственном освещении, что дает возможность выращивать растения в разное время года. [c.269]

    Напротив, окисление гексофуранозидов происходит гораздо сложнее поскольку первоначальный продукт окисления, содержащий группировку малондиальдегида, может подвергаться дальнейшему окислению. Последнее приводит в конечном счете к поглощению 6 -молей ШО4 № полному. распаду углевода с выделением спирта — агликона, четырех-молей мура.вьиной кислоты, одного моля углекислоты и одно1Го молж формальдегида (см. стр. 90). [c.89]

    В учебном пособии описаны основные биохимические методы исследования органических азотистых вещесхв, белков, ферментов, витаминов, углеводов, жиров и жироподобных веществ, спиртов, альдегидов, органических кислот и дубильных веществ. Рассмотрен весовой метод определения углекислоты при дыхании зерна и комплексный метод определения водорастворимых, легкоокисляющихся сульфгидрильных соединений и восстановленного глюта-тиона. Особое внимание уделено исследованию процесса гликолиза (брожения) с применением оригинальной автоматически записывающей аппаратуры. [c.2]

    Приготовление хлеба начинается с замеса для получения однородного по всей массе теста. Его продолжительность 7— о мин для пшеничного хлеба и 5—7 мин для ржаного хлеба. 0 это время происходят сложные, в первую очередь, коллоидные 0роцессы набухание муки, слипание ее частичек и образование ассы теста. В них участвуют все основные компоненты теста белки, углеводы, липиды, однако ведущая роль принадлежит белкам Белки, связывая воду, набухают, отдельные белковые макромолекулы связываются между собой за счет разных по энергии связей и взаимодействий и под влиянием механических воздействий образуют в тесте трехмерную сетчатую структуру, 0олучнвшую название клейковинной. Это растяжимый, эластичный скелет или каркас теста, во многом определяющий его физические свойства, в первую очередь упругость и растяжимость. В этот белковый каркас включаются крахмальные зерна, продукты деструкции крахмала, растворимые компоненты муки и остатки оболочек зерна. На него оказывают воздействие углекислота и поваренная соль, кислород воздуха, ферменты. В дальнейшем, в ходе брожения теста, клейковинный каркас постепенно растягивается. Основная часть теста представлена крахмалом, часть зерен которого повреждена при помоле. Крахмал также связывает некоторое количество воды, но объем его при этом увеличивается незначительно. Кроме твердой (эластичной) в тесте присутствует и жидкая фаза, содержащая водорастворимые (минеральные и органические) вещества, часть ее связывается нерастворимыми белками при их набухании. При замесе тесто захватывает и удерживает пузырьки воздуха. Следовательно, после замеса тесто представляет собой систему, состоящую из твердой (эластичной), жидкой и газообразной фаз. [c.107]

    Полисапробная зона характерна для свежезагрязненной воды, где протекают начальные этапы разложения органических соединений. Полисапробные воды содержат большое количество органических веществ, в первую очередь белков и углеводов. При разложении этих веществ в большом количестве выделяются углекислота, сероводород, метан. Вода бедна кислородом, поэтому химические процессы носят восстановительный характер. Резко выраженные неблагоприятные условия среды ведут к ограничению числа видов в растительном и животном населении водоема. Основными обитателями являются бактерии, количество которых достигает сотен миллионов в I мл воды. Очень много серобактерий и инфузорий. Все обитатели полисапробной зоны по способу питания относятся к консуйентам (потребителям), или иначе гетеротрофам. Они нуждаются в готовом органическом веществе. Продуценты (производители), т. е. автотрофы, к которым относятся зеленые растения, создающие органическое вещество из минеральных соединений, здесь совершенно отсутствуют. [c.156]

    Дополнительные трудности возникают при работе С мечеными атомами, когда необходимо определить удельную активность катехицов. Для изучения образования и превращений катехинов обычно используют вводи.мую в растение фотосинтетическим путем меченую С " углекислоту. В этих условиях будет прежде всего внедряться в ближайшие продукты фот осинтеза (углеводы, органические кислоты, ам инокисло-ты), которые, естественно будут иметь нанболее высокую радиоактивность. В результате хроматографирования водных или спиртовых экстрактов растительных тканей, содержащих широкий набор соединений, пятна катехинов могут частично совпадать с пятнами иных веществ (в часности, /-эпигаллокатехин частично перекрывается фруктозой). Такое наслаивание не препятствует реакции с ванилином в силу ее высокой специфичности, однако активность пятен будет значительно завышаться. Поэтому в тех случаях, когда определяется удельная активность, необходимо перед хроматографированием как-то выделить фракцию катехинов. С этой целью анализируемый водный экстракт листьев чайного растения взбалтывают с хлороформом (трижды по /з объема водного слоя в хлороформ переходит кофеин и примеси зеленых и желтых пигментов) и уксусноэтиловым эфиром (6 раз по /б—7б объема в уксусно- [c.415]

    Важнейшая функция световой реакции в растениях состоит в образовании ассимиляционной энергии (заключенной в АТФ и НАДФ-Нг), необходимой для ассимиляции углекислоты в последующих темновых реакциях. На основе схемы, предложенной для темновой реакции (см. фиг. 73), ассимиляция каждого эквивалента углекислоты с образованием соединения, соответствующего по степени окисления углеводу, требует два эквивалента НАДФ-На и три эквивалента АТФ  [c.260]

    Было высказано предположение, что первичная световая реак ция в фотосинтезе и реакции Хилла заключается в фотолизе водь для создания восстановительного потенциала водорода и окисли тельного потенциала гидроксила. При фотосинтезе водород в конеч ном счете восстанавливает углекислоту с образованием углеводов, а при реакции Хилла водород восстанавливает добавленный окислитель. В обоих случаях гидроксил в конечном счете освобождает молекулярный кислород. Эти реакции представлены в табл. 23. Согласно предложенной схеме, весь кислород, выделяемый при фотосинтезе, происходит из воды. Используя НгО , удалось показать, что кислород, выделяемый в процессе фотосинтеза, действительно происходит из воды, а не из углекислого газа. [c.261]

    Гинотеза фотолиза воды полностью применима также и к фотосинтезирующим бактериям. Эти бактерии, подобно растениям, способны превращать углекислоту в углеводы. Однако они отличаются от растений в том отношении, что никогда не выделяют кислорода и фотосинтез у них зависит от наличия восстанавливающих веществ (например, НгЗ, Нг). Ван-Ниль [15] выдвинул предположение, что у этих организмов первичная реакция, требующая света, представляет собой также фотолиз воды. Как и в растениях, водород используется в конечном счете для восстановления углекислоты до углеводов. Однако бактерии отличаются от растений в том отношении, что гидроксил не служит источником свободного кислорода, а окисляет добавленный восстановитель (табл. 23). [c.261]

    Полученные данные свидетельствуют о том, что в молодых побегах чайного растения происходит не только образование катехинов, но и их использование в качестве дыхательного материала. При этом бензольные ядра молекул катехинов и соединяющий их Сз-фрагмепт расщепляются, а их осколки после ряда превращений выделяются в виде углекислоты. Тот факт, что интенсивное расщепление С -катехинов начинается спустя лишь 20—30 час после их введения в побеги, свидетельствует о том, что пока в листьях имеется достаточное количество сахаров и ассимиляционного крахмала, дыхание осуществляется преимущественно за счет углеводов. По мере же исчерпания легко доступных энергетических источников в обмен вовлекаются более трудно мобилизуемые соединения, которыми в листьях чая являются катехины. Подтверждением этому служит анализ содержания сахаров в побегах чая непосредственно после инфильтрации воды как контроля и спустя 50 час после их выдерживания в темноте (табл. 33). [c.226]

    Таким образом, в основном были выяснены взаимные отношения между теми углеводами, которые образуются в первую очередь после начала фиксации углекислоты. Все эти превращения происходят на уровне сахаров триоза, тетроза, пентоза, гексоза и гептоза — все находятся на одном окисли-тельно-восстановительном уровне. Все они также находятся примерно на одинаковом энергетическом уровне, так что эти превращения не требуют большой затраты энергии. Но как образуется триоза — фосфоглицериновая кислота Как происходит фиксация СО2 Ответ на эти вопросы дали дополнительные исследования. [c.127]


Смотреть страницы где упоминается термин Углеводы Углекислота: [c.220]    [c.15]    [c.30]    [c.80]    [c.188]    [c.1203]    [c.801]    [c.399]    [c.138]   
Основы общей химии Том 2 (1967) -- [ c.7 , c.19 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.493 , c.507 ]




ПОИСК





Смотрите так же термины и статьи:

Углекислота



© 2025 chem21.info Реклама на сайте