Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод химическая связь с элементами

    Современная химия достигла такого уровня развития, что существует целый ряд ее специальных разделов, являющихся самостоятельными науками. В зависимости от атомарной природы изучаемого вещества, типов химических связей между атомами различают неорганическую, органическую и элементоорганическую химии. Объектом неорганической химии являются все химические элементы и их соединения, другие вещества на их основе. Органическая химия изучает свойства обширного класса соединений, образованных посредством химических связей углерода с углеродом и другими органогенными элементами водородом, азотом, кислородом, серой, хлором, бромом и йодом. Элементоорганическая химия находится на стыке неорганической и органической химии. Эта третья химия относится к соединениям, включающим химические связи углерода с остальными элементами периодической системы, не являющимися органогенами. Молекулярная структура, степень агрегации (объединения) атомов в составе молекул и крупных молекул — макромолекул привносят свои характерные особенности в химическую форму движения материи. Поэтому существуют химия высокомолекулярных соединений, кристаллохимия, геохимия, биохимия и другие науки. Они изучают крупные объединения атомов и гигантские полимерные образования различной природы. Везде центральным вопросом для химии является вопрос о химических свойствах. Предметом изучения являются также физические, физико-химические и биохимические свойства веществ. Поэтому не только интенсивно разрабатываются собственные методы, но и привлекаются к изучению веществ другие науки. Так важными составными частями химии являются физическая химия и химическая физика, исследующие химические объекты, процессы и сопровождающие их явления с помощью расчетного аппарата физики и физических экспериментальных методов. Сегодня эти науки объединяют целый ряд других квантовая химия, химическая термодинамика (термохимия), химическая кинетика, электрохимия, фотохимия, химия высоких энергий, компьютерная химия и др. Только перечень фундаментальных наук химического направления уже говорит об исключительном разнообразии проявления химической формы движения материи и влиянии ее на пашу повседневную [c.14]


    Атом углерода способен образовывать химическую связь почти со всеми элементами периодической системы. Соединения, в молекулах которых атом углерода непосредственно связан с атомом эле- [c.172]

    Соединения с отрицательной степенью окисления углерода. С менее электроотрицательными, чем он сам, элементами углерод дает карбиды. Поскольку для углерода характерно образовывать гомоцепи, состав большинства карбидов не отвечает степени окисления углерода —4. По типу химической связи можно выделить ковалентные, ионно-ковалентные и металлические карбиды. [c.396]

    Подбор коэффициентов в уравнениях этих реакций проводят методом электронного баланса. Условную степень окисления атома углерода-восстановителя вычисляют исходя из того, что электронные пары оттягиваются к атому более электроотрицательного элемента, а электроотрицательность (ЭО) углерода, водорода и кислорода находится в последовательности ЭО кислорода > ЭО углерода > ЭО водорода. Отсюда следует, что химическая связь между атомами углерода неполярная в полярной связи между атомом углерода и атомом кислорода атом углерода поляризован положительно и в одинарной связи условно приобретает один положительный заряд в двойной — [c.102]

    Вторая особенность элементоорганических соединений заключается в том, что прочность высокополярных химических связей ряда элементов больше прочности соответствующих связей углерода. Особенно наглядно это видно для связей кремния с кислородом (см. данные табл. 4.6 и объяснение причин в разд. 4.5.7). [c.587]

    Кристаллы неметаллических элементов с каркасной структурой, подобные углероду или кремнию, обладают свойствами диэлектриков (изоляторов), т.е. не проводят электрический ток. Применение теории молекулярных орбиталей к обсуждению химической связи в неметаллических каркасных кристаллах сталкивается со значительными трудностями. Достаточно сказать, что в ковалентных каркасных кристаллах обычно удается вести подсчет валентных электронов вокруг каждого атома, подобно тому как это делается при составлении льюисовых структур, и оказывается, что при этом выполняется правило октета. Это объясняется тем, что атомы в неметаллических каркасных кристаллах обычно имеют по крайней мере столько валентных электронов, сколько у них есть валентных орбиталей. Следовательно, в таких кристаллах предпочтительны низкие координационные числа, и между каждым атомом и его ближайшими соседями могут образовываться простые двухэлектронные связи. Низкие координационные числа являются причиной того, что потенциальная энергия электрона внутри таких кристаллов не постоянна она значительно понижается в межъядерных областях, и поэтому электроны не могут свободно перемещаться по кристаллу, подобно тому как это происходит в металлах. [c.629]

    Элементы, находящиеся в первом основном ряду таблицы периодической системы элементов, как бор, углерод и азот, имеют по четыре электронных орбиты, которые могут быть использованы для образования связей. Они известны как 2s, 2рх, 2ру, 2pz — электронные орбиты. Каждая из орбит способна удерживать два электрона с противоположными спинами. Химическая связь (<г-связь) между двумя атомами образуется путем частичного перекрывания двух таких орбит, по одной от каждого атома, содержащих пару электронов противоположного спина. Так, нанример, атомы таких элементов, как бор, углерод и азот, имеющих суммарно по четыре орбиты, способны к образованию максимум четырех простых связей. [c.393]

    Ковалентными карбидами являются 81С и В4С. Химическая связь в иих приближается к чисто ковалентной, так как В и 5 , являясь соседями углерода в периодической системе элементов, близки к нему по размеру атомов и электроотрицательности. [c.366]


    ЧТО огромное разнообразие веществ растительного и животного происхождения образовано весьма небольшим числом химических элементов (углерод, водород, кислород, азот и некоторые другие). К тому же, при одинаковом составе вещества имеют разные свойства. Это означало, что свойства веществ зависят не только от состава, но и от структуры. Если при зарождении химии как науки главным направлением был химический анализ, то с появлением структурной химии — органический синтез. Сегодня структурная химия строится на квантовомеханических представлениях о химической связи, строении молекул и кристаллов, на методах исследования структуры веществ, изучении влияния структуры на свойства веществ и пр. [c.6]

    В процессе карбонизации в системе накапливаются наиболее прочные химические связи, и она стремится к некоторому равновесному содержанию химически стабильных соединений. Их накопление при карбонизации в изотермических условиях со ступенчатым подъемом температуры проявляется в ступенчатом изменении элементного состава и свойств КМ в направлении равновесия на каждой изотермической стадии [47...51]. Содержание углерода непрерывно возрастает и наблюдаются температурные интервалы интенсивного удаления или накопления других элементов. Так, основная масса водорода удаляется в области 200... 1000 , серы - при 400. .. 1600°С, ванадия и титана - при Т > 2000 С [33,34,37,39,40]. [c.12]

    По характеру химической связи элементов с углеродом и другими элементами в их составе элементоорганические соединения делят на две большие группы. В первую группу включают соединения в- и р-элементов непереходных элементов), а во вторую — органические производные й- и /-элементов (переходных элементов). Для соединений первой группы характерно образование ковалентных полярных <7-связей. Для органических производных второй группы типичны комплексные соединения с участием -электронов предвнешней электронной оболочки атомов элемента. Существуют и другие способы классификации, однако свойства элементоорганических соедршений столь разнообразны, что проще рассмотреть наиболее типичные из них в порядке изменения строения электронной оболочки атома элемента, как это делалось при рассмотрении свойств неорганических соединений. [c.588]

    В солеобразных карбидах существует преимущественно ионная связь. Поскольку углерод по электроотрицательности находится примерно в середине полного ряда элементов, то солеобразные карбиды образуются лишь при соединении углерода с металлами — активными восстановителями. Данные карбиды делятся, в свою очередь, на карбиды, не содержащие углерод-углеродных химических связей (так называемые производные метана) и содержащие их (ацетилениды, карбиды с тройной углерод-углеродной связью в ионе С2 ). Первые [c.342]

    Первая особенность элементоорганических соединений по сравнению с органическими заключается в том, что любой другой элемент Э образует в цепочке атомов менее прочные гомоатомные химические связи Э-Э, чем углерод [c.587]

    В изменении свойств атомов элементов и соединений в ряду С—51—Ое—5п—РЬ четко проявляется вторичная периодичность (см. 4.5). Уменьшение устойчивой степени окисления от С к РЬ связано с возрастанием энергии, необходимой для перевода атомов из 5 р -состояния в 5/ з-состояние. По химическим свойствам элементы 1УА-подгруппы весьма разнообразны — от ярко выраженного неметаллического элемента углерода до типичного металла— свинца. [c.284]

    Первоначально термин окисление был введен в химию, как присоединение к элементам кислорода. Понять взаимосвязь приведенного в начале параграфа определения с исторически первым определением нетрудно, если вспомнить, что кислород — наиболее электроотрицательный элемент после фтора, и, следовательно, во всех соединениях кислорода, кроме РзО, электронная пара, образующая химическую связь кислорода с каким-либо другим атомом, оттянута в сторону кислорода. Таким образом, связанный с кислородом атом частично лишен своего электрона (в случае кратной связи — двух электронов) и поэтому может считаться окисленным. Число электронов, отданное атомом полностью (в случае образования иона) или частично (в случае образования связи с более электроотрицательным элементом), называют степенью окисления элемента. Чаще всего этим понятием пользуются применительно к соединениям кислорода и галогенов, хотя в принципе можно его распространить и на другие элементы и считать, например, водород в метане окисленным, а углерод — восстановленным, поскольку электроотрицательность углерода несколько выше, чем у водорода (соответственно 2,5 и 2,1). [c.252]

    Нитридами называют соединения азота, карбидами— соединения углерода с менее электроотрицательными, чем азот и углерод, элементами. По структуре и свойствам нитриды и карбиды одного и того же элемента часто бывают подобными друг другу. Объясняется это тем, что углерод и азот, расположенные, в одном (втором) периоде периодической системы, мало отличаются размерами атомов и значениями электроотрицательностей. Нитриды и карбиды классифицируют по периодической системе и природе химической связи на следующие группы  [c.243]

    Химические связи в большинстве органических соединений имеют слабо выраженный полярный характер присоединение к ним таких электроотрицательных элементов, как фтор, кислород, хлор, азот, приводит к изменению электронной плотности между атомами углерода и указанными элементами, а следовательно, и к увеличению полярности связи между ними. Степень окисления атомов в них определяется так же, как и в ковалентных полярных соединениях. [c.58]

    Число протонов в ядре атома принято называть порядковым (атомным) номером и обозначать буквой Z. Оно совпадает с числом электронов, окружающих ядро, поскольку атом должен быть электрически нейтральным. Массовое число атома равно полному числу содержащихся в нем тяжелых частиц протонов и нейтронов. Когда два атома сближаются на достаточное расстояние, чтобы между ними возникло химическое взаимодействие-или, как принято говорить, химическая связь,-каждый атом ощущает главным образом наличие самых внешних электронов другого атома. Поэтому именно эти внещние электроны играют определяющую роль в химическом поведении атомов. Нейтроны в составе ядра оказывают ничтожное влияние на химические свойства атомов, а протоны важны постольку, поскольку они определяют число электронов, которые должны окружать ядро нейтрального атома. Все атомы с одинаковым порядковым номером ведут себя в химическом отношении практически одинаково и рассматриваются как атомы одного и того же химического элемента. Каждому элементу присвоено определенное название и одно- или двухбуквенный символ (обычно заимствованный от греческого или латинского названия). Например, символ углерода-С, а символ кальция-Са. В качестве символа натрия. Ка, взяты две первые буквы его латинского (и немецкого) названия натриум, чтобы отличить его от азота N (латинское название нитроген). В таблице- атомных масс элементов, помешенной на внутренней стороне обложки книги, приведен алфавитный перечень элементов и их символов. [c.15]

    Повышенное сродство элементов (например, 81, А1, Р) к электроотрицательным элементам. Иначе говоря, кремний, алюминий, фосфор и другие элементы образуют более слабые, чем в случае углерода, химические связи с электроположительными элементами (Н, А1, В, 81, Аз, 8Ь), но более сильные — с электроотрицательными элементами (О, 14, С1, Вг, Р). При рассмотрении злектроотрпцатель-ности различных элементов (табл. 1) видно, что углерод (хс = 2,5) занимает примерно вреднее положение между самым электроотрицательным элементом — фтором (хр = 4,0) и самым злектрополоя и-тельным элементом — францием (хрг = 0,8). Поэтому атом С имеет наименьшую тенденцию отдавать или получать электроны, т.е. менее подвержен злектрофильной или нуклеофильной атаке. Это является одной из причин химической стабильности углеродных (—С—С—) цепей молекул. [c.12]


    Возникновение гибридных, т. е. смешанных электронных орбита-лей, происходит в тех случаях, когда в образовании химических связей атомом А принимают участие электроны с различными, но не очень сильно отличающимися друг от друга энергетическими состояниями. Такому условию удовлетворяют 5- и р-электроны одного и того же уровня. Так, например, в процессе образования связей возбужденными атомами бериллия (1з 2з2р), бора (ls 2s2p ) и углерода (15 252р ) принимают соответственно участие один 5- и один р- электрон (Ве), один х- и два р-электрона (В) и один 5-и три р-электрона (С). Так как орбитали 5- и р-электронов различны по форме, то предварительной стадией образования химических связей атомами этих электронов является образование гибридных орбиталей, форма которых является результатом взаимного изменения форм орбиталей 5- и р-электронов, из которых они образовались. Такио гибридные орбитали характеризуются симметричной направленностью относительно центра атома и способностью к максимальному взаимному перекрыванию общих электронных орбиталей при последующем их взаимодействии с электронными орбиталями элемента-партнера. [c.53]

    Водород по определению имеет валентность, равную 1. Валентность кислорода в Н2О и большинстве других соединений 2, но в пероксиде водорода, Н2О2, она равна 1. Пользуясь данными табл. 6-1, можно видеть, что С1 и Вг имеют валентность 1, Са 2, а Аз 3 углерод может проявлять различные валентности 4, 3, 2 и 1. Сера имеет валентность 2 в Н25, 4 в 502 и 6 в 50з. Валентность азота в аммиаке 3, в N02 4 и в N20 2. Отметим, что в указанных бинарных соединениях суммарная валентность всех атомов одного элемента точно равна суммарной валентности всех атомов другого элемента. В 50з один атом серы с валентностью 6 соединен с тремя атомами кислорода, имеющими каждый валентность 2. Формулировка понятия валентности, или емкости насыщения, была первым шагом на пути создания теории химической связи. Вторым шаю.м явилось введение положительных и отрицательных валентностей, с условие.м чтобы алгебраическая сумма валентностей всех атомов в молекуле была равна нулю Водороду приписывалась валентность -Ь 1 следовательно, чтобы сумма валентностей всех атомов в молекуле воды Н2О оказалась равной нулю, [c.294]

    Вещества, в молекулах которых имеется одна или несколько химических связей углерод - злемент. В данном случае в термин "элемент" не включают углерод, водород, азот, кислород, серу, гало1 сны. [c.56]

    Система, описанная в работе [6], является дальнейшим развитием предыдущей в том плане, что учитывается пространственное строение молекул. Как и ранее, синтез ведется от конца к началу (от продуктов реакции к исходным веществам) по заранее определенному набору химических реакций. Аналогичный подход использован в системе [10]. Более обоснованными и перспективными являются методы, основанные на математическом описании структуры молекул и химических реакций и классифицируемые как логические методы [8, И]. В работе [8] для представления молекулы в качестве параметров используются тип атома и топо-тогическая структура связей между атомами в молекуле. При том акцент сделан на типы атомов углерода в молекуле в соответствии с природой связи углерода с другими элементами. В работе И] для характеристики молекулы используются три параметра естоположение атома в молекуле, ковалентные связи между томами и свободные электроны в каждом атоме молекулы. Послед- [c.443]

    Имаотся и другие основания. Например, наличие специфических свойств - они горят, образуют живую материю, используются ею и т.д. Громадное же число органических соединений заставляет предполагать наличие у углерода и водорода каких-то уникальных особенностей. И они есть. Из всех элементов периодической системы только у углерода и водорода на всех валентных орбиталях находится по одрому вален-таому электрону. Это позволяет им легко образовьшать устойчивые в условиях нашей планеты химические связи. [c.12]

    При установлении любой структурной формулы необходимо исходить из хорошо известного свойства элементов образовывать химическую связь с вполне определенным числом атомов других элементов. Это свойство обычно выражают тем, что приписывают данному элементу одну или несколько определенных валентностей. Так, например, водород, как известно, одновалентен, кислород в большинстве случаев двухвалентен (в оксониевых солях он может иметь, как мы увидим на стр. 151 другую валентность), азот — трех- и пятивалентен (или же координационно четырехвалентен) и т. п. В органической химии особо важную роль играет валентность углерода, который почти всегда бывает четырехвалентным, как видно, например, из существования простейших углеродных соединений СНь СС ь СОо, СЗг и т. п. Не четы-рехвалеитным углерод является лишь в очень немногих соединениях, обладаюиа,их специфическим строением, чрезвычайно ненасыщенным характером и часто неустойчивостью. С ними мы встретимся позднее в других главах этой книги. Исключением является окись углерода СО, известная уже из неорганической химии. [c.14]

    Карбиды. При взаимодействии бора, алюминия и элементов подгруппы галлия с углеродом возможно образование карбидов, которые имеют смешанную химическую связь. Наибольший интерес представляют карбиды бора и алюминия. Карбид бора В4С может быть получен при накаливании смеси ВоОз с углем в электрической печи. В,,С тугоплавок ( ,,=2550 °С), чрезвычайно тверд (близок по твердости к алмазу) и устойчив к различным химическим воздействиям. Карбид алюминия АЬС, — производное метана СН4, метаннд — получают при взаимодействии глинозема с углем (/= = 2000°С)  [c.276]

    Выделение органической химии в самостоятельный раздел химической науки вызвано многими причинами. Во-первых, это связано с многочисленностью органических соединений (в настоящее время известно свыше трех миллионов органических Еси еств, а неорганических— около 150 тыс.). Вл дряя причина состоит в сложности и своеобразии органических веществ по сравнению с неорганическими. Например, их температуры плавления и кипения имеют более низкие значения они легко разрушаются при воздействии на них даже сравнительно невысоких температур (часто не превышающих 100°С), в то время как неорганические вещества свободно выдерживают очень высокие температуры. Большинство химических реакций с участием органических соединений протекает гораздо медленнее, чем ионные реакции неорганических веществ, что обусловлено природой основной химической связи в органических веществах — ковалентной связью. Углерод, входящий в состав органических веществ, обладает особой способностью соединяться не только с несколькими другими углеродными атомами, но и почти со всеми элементами периодической системы (кроме инертных газов). Следует подчеркнуть, что выход продукта в органической реакции, как правило, ниже, чем при реакции неорганических веществ. Кроме того, в области органической химии приходится сталкиваться с новыми понятиями и явлениями органический радикал, функциональная группа, изомерия и гомология, а также взаимное влияние атомов и атомных групп в молекуле. [c.5]

    Химическая связь М—СО в карбонилах металлов включает ст- и я-связп (стр. 460). Ст-Связь образуется по донорно-акцепторному механизму за счет свободных орбиталей атома ( -элемента и электронных пар углерода молекул СО. л-Связь возникает по дативному механизму за счет свободных лР = Р-орбиталей СО и -электронных пар атома -элемента. [c.328]

    Углеводородами называются вещества, состоящие всего из двух элементов-углерода и водорода. Можно предположить, что при столь ограниченном составе химические свойства углеводородов не должны отличаться слищком большим разнообразием. Однако на деле все обстоит совсем не так. Важнейшей структурной особенностью углеводородов, а также большинства других органических соединений является наличие в них устойчивых углерод-углеродных связей. У глерод - единственный в своем роде химический элемент, способный образовывать устойчивые цепочки из атомов, связанных между собой простыми, двойными или тройными связями. Ни один другой элемент не способен к образованию подобных структур. [c.408]

    Элемеитооргаиические соединения з-элементов. Электроотрицательность щелочных элементов находится в пределах от 1,0 у лития до 0,7 у цезия и франция. Ионность химической связи их с углеродом составляет 40-г 50%. Поэтому все органические производные щелочных элементов, кроме соединений лития, являются твердыми нелетучими солеобразными веществами с ионной связью. В органических растворителях они не растворимы. Литийорганические соединения имеют большую долю ковалентного характера в химической связи, они растворимы в органических растворителях. [c.588]

    Как известно, алмаз по своему химическому составу является чистым углеродом, так же как и графит, которые таким образом являются полиморфными модификациями одного и того же элемента, однако свойства их резко различны. Это объясняется отличием в строении их кристаллических структур (рис. 33). Алмаз (рис. 33, а) обладает кубической гранецентрированной решеткой с расстояниями между атомами 0,154 нм постоянная решетки алмаза равна 0,356 нм. Графит (рис. 33,6) имеет гексагональную слоистую решетку расстояние между атомами в слое равно 0,142 нм, а между слоями—0,339 нм. Такое большое расстояние между слоями обусловливает слабость химической связи по этому направлению, благодаря чему графит является рыхлым, мягким веществом — слои легко скользят и отделяются друг от друга. Алмаз >ке, как известно, является самым твердым из всех известных нам веществ. Следует сказать, что это свойство в основном определяет ценность алмаза как материала в самых разнообразных отраслях промышленности (резцы, фрезы, абразивные круга, шл.чфовальные порошлн и пасты. [c.124]

    Ковалентными карбидами являются 51С и В С. Химическая связь в них приближаетса к чисто ковалентной, так как и В и 81, являясь соседями углерода в периодической системе элементов, близки к нему по равмеру атомов и электроотрицвтельности. [c.374]

    Гибридизация одной s- и трех р-орбиталей (sp -гибридизация), как уже указывалось, объясняет валентности углеродного атома. Образование sp -гибридных связей характерно также и для аналогов углерода — кремния и германия валентности этих элементов также имеют тетраэдрическую направленность. Может возникнуть вопрос — если гибридные орбитали обеспечивают большую концентрацию электронного облака между ядрами и, следовательно, более прочную связь, то почему они не возникают в НаО л NH3 На да шый вопрос следует ответить, что направленность связей в этих соединениях также можно объяснить sp -гибридизацией. Такой подход является даже более точным, чем изложенный на стр. 161 и 162. Не следует, однако, забывать, что оба подхода являются приближенными. При образовании молекулы HjO атом кислорода люжет приобретать конфигурацию наружного слоя где Ф2, Фз и — sp -гибридные волновые функции верхние индексы указывают количество электронов, занимающих данную орбиталь. Таким образом, две из четырех гибридных орбиталей атома кислорода заняты неспаренньши электронами и могут образовать химические связи угол между этими связями должен составлять 109,5°. Это значение ближе к экспериментальному (104,5°), чем величина 90°, даваемая схемой, рассмотренной на стр. 161. Однако если на стр. 161—162 пришлось объяснять отклонение теоретической величины от экспериментальной для молекулы HjO, то здесь нужно объяснить, почему углы между связями у аналогов воды HjS, HaSe и НаТе заметно отличаются от 109,5°. Это объясняется действием ряда факторов. В частности, в соединениях, содержащих большие атомы, связь слабая и выигрыш энергии в результате образования связи гибридными орбиталями не компенсирует некоторое возрастание энергии s-электронов, обусловленное их переходом на sp -гнбридные орбитали. Это препятствует гибридизации. Кроме того, как показали точные расчеты, при образовании связи Э—Н 25-орбитали кислорода (и азота) сильнее перекрываются с ls-орбиталями водорода, чем 2р-орбита-ли. Для аналогов кислорода, наоборот, сильнее перекрываются р-орбитали. Это обусловливает больший вклад s-состояний (гибридизацию) в образование химической связи в молекуле Н О, чем в ее аналогах. Поэтому валентные углы в H2S, HjSe и НаТе близки к 90°. [c.168]

    Синтез на поверхности элемент-кислородных слоев, рассмотренный в работах 5.1 и 5.2, основывался на гидроксилхлорид-ном цикле реакций молекулярного наслаивания. Получение углерода — простого вещества — на поверхности оксида кремния связано с проведением метилхлоридного цикла реакций, в результате которых в синтезируемом слое образуются углерод-углеродные связи. Поэтому на поверхности оксидной матрицы необходимо изменить химический состав функциональных групп — заместить гидроксильные группы, например, на ме-тильные. [c.102]

    Кроме длины и энергии важными характеристиками химической связи являются насыщаемость и направленность. Однако эти свойства присущи лишь ковалентной связи. Ионная связь, природа которой обусловлена ненасыщенным и пространственно симметричным электростатическим полем центрального иона, ненасыщена и не имеет какого-либо определенного направления. Насыщаемость ковалентной связи выражается в ограничении числа валентных связей, которые может дать данный атом. Например, азот притягивает три атома водорода с образованием молекул ЫНз, молекул же МН4, ЫН5 и т. д. не существует. Согласно квантово-механическим соображениям в образовании связи могут участвовать только неспаренные электроны атома число их определяет валентность элемента. В простых случаях число неспаренных электронов в атоме находится с помощью принципа Паули и правила Гунда, в более сложных рассматривается возможность гибридизации волновых функций. Направленность связей объясняет стереохимию молекул, которая начала развиваться после того как Ле-Бель и Вант-Гофф (1874) выдвинули важнейший тезис о тетраэдрическом расположении валентностей углерода. [c.18]

    Доквантовая теория химического строения устанавливала целочисленность валентности, существование кратных (двойных и тройных) связей и переменную валентность элементов в зависимости от того, в какое соеданение элемент входит. Устанавливалась также связь между высшей валентностью по водороду и по кислороду и номером группы периодической системы, в которой находится элемент. С развитием стереохимии представление о валентности дополнилось учением о направленности валентности. Со гласно этому учению химическая связь ха рактеризуется не только определенным чио лом единиц сродства, валентностью, но и направленностью валентности в пространстве. Так принималось, что валентностЯ атома углерода направлены под углом друг к другу в 109°28, т. е. от атома углерода, находящегося в центре Правильного тетраэдра, к его вершинам. Направленность валентности и ее целочисленность считались фундаментальными свойствами ковалентной связи. [c.182]

    Способность элемента к образованию аллотропных модификаций обусловлена строением атома, от которого зависит тип химической связи, а также строение молекул и кристаллов. Так, например, алмаз, графит, карбин и поликумулен состоят только из атомов углерода, но отличаются своими физическими свойствами и химической активностью. Объясняется это тем, что эти модификации углерода обладают разной кристаллической структ турой, разными связями между атомами. [c.5]

    В работах Э. Франкланда (1852—1855), А. Кекуле (1857—1858) и А. М. Бутлерова (1861 —1870) валентностью (или атомностью) была названа целочисленная величина, выражающая количество единиц сродства свободного атома любого элемента. Было установлено, что атом водорода имеет одну единицу сродства, атом кислорода — две, атом углерода — четыре и т. д. И хотя валентность в работах названных химиков рассматривалась как причина образования попарных межатомных химических связей и устанавливалась по числу этих связей, т. е. по следствию, никакой путаницы и никакого отождествления причины и следствия, валентности и химической связи на первых порах не было. Например, А. М. Бутлеров отчетливо указывал на то, что каждому атому прирож-дено определенное количество силы, производящей химические явления , и что при химическом соединении потребляется (связывается, переходит в новую форму) часть этой силы или все ее количество . Например, в случае образования из углерода, наделенного четырьмя единицами сродства, диоксида углерода происходит связывание всех единиц, в случае же образования оксида углерода связываются лишь две единицы сродства, а две остаются свободными  [c.55]

    Валентность. Окислительное число. Валентность — это мера способности атома элемента к образованию химических связей с атомами других или того же самого элемента. Так, хлор в НС1 одновалентен, кислород в HjO двухвалентен и т. д. В пособиях по химии не всегда однозначно указываются валентные числа атомов элементов из-за трудности всей проблемы химической связи в целом. В настоящем посрбии авторы пользуются как понятием валентность , так и окислительное число . Под валентностью элемента подразумевается число одиночных электронов, которые атом выделил для образования химических связей. Азот в NH, трехвалентен, но в HNO3 не пятивалентен, так как атом азота не имеет пяти одиночных электронов (см. стр. 213). В молекуле Nj азот трехвалентен (а не нульвалентен), так как каждый из атомов азота выделил по три электрона для создания трех связующих электронных пар. Углерод во всех < лучаях четырехвалентен, кислород двухвалентен. Для интерметаллических соединений обычное понятие валентности неприменимо и этот вопрос в практикуме не рассматривается. Валентность указывается без знака плюс или минус. [c.68]

    Азот и фосфор являются элементами УА группы периодической системы Д. И. Менделеева. На внешнем энергетическом уровне атомов этих элементов находится пять электронов из них три р-электрона. Поэтому в нормальном состоянии они проявляют валентность, равную трем. Наибольшее изменение в химических свойствах элементов УА группы наблюдается при переходе от азота к фосфору. В атомах азота внешним энергетическим уровнем является второй, содержащий только 5- и р-поду ровни, а подуровень с1 отсутствует. Атомы азота при переходе в возбужденное состояние могут увеличить число непарныхэлектронов максимум до четырех и при этомза счет потери одного электрона. В этом случае образуется электронная конфигурация а азот становится четырехвалентным, как в ионе [ЫН4] . Поэтому азот не проявляет валентности, равной пяти. В атомах фосфора наружным энергетическим уровнем является третий, состоящий из трех подуровней з, р и й. При возбуждении атомов фосфора увеличение числа непарных электронов происходит за счет использования -подуровня с образованием электронной конфигурации поэтому фосфор в отличие от азота может проявлять валентность, равную пяти. Размеры атомов азота и фосфора меньше, а энергия ионизации этих элементов соответственно больше, чем углерода и кремния. В связи с этим азот и фосфор при химических реакциях не теряют электронов и не превращаются в элементарные катионы. Сродство к электрону этих элементов незначительно и поэтому они, как правило, не превращаются и в элементарные анионы. Азот и фосфор образуют соединения как с кислородом, так и с водородом, только с ковалентными связями. Таким образом, азот и фосфор являются неметаллами. Причем свойства неметаллов у них выражены сильнее, чем у углерода и кремния. [c.213]

    По химическому составу полупроводники весьма разнообразны. К ним относятся элементарные вещества, как, например, бор, графит, кремний, германий, мышьяк, сурьма, селен, а также многие оксиды ( uaO, ZnO), сульфиды (PbS), соединения с индием (InSb) и т. д. и многие соединения, состоящие более чем из двух элементов. Известны и некоторые органические соединения обладающие полупроводниковыми свойствами. Таким образом, к полупроводникам относится очень большое число веществ. Обусловлены полупроводниковые свойства характером химической связи (ковалентным, или ковалентным с некоторой долей ионности), типом кристаллической решетки, размерами атомов, расстоянием между ними, их взаиморасположением. Если химические связи вещества носят преимущественно металлический характер, то его полупроводниковые свойства исключаются. Зависимость полупроводниковых свойств от типа решетки и от характера связи ясно видна на примере аллотропных модификаций углерода. Так, алмаз — типичный диэлектрик, а графит — полупроводник с положительным температурным коэффициентом электропроводности. То же у олова белое олово — металл, а его аллотропное видоизменение серое олово — полупроводник. Известны примеры с модификациями фосфора и серы. [c.298]


Смотреть страницы где упоминается термин Углерод химическая связь с элементами: [c.220]    [c.220]    [c.407]    [c.601]    [c.12]    [c.369]    [c.13]   
Основы общей химии Том 2 (1967) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Углерод связи

Химическая связь

Химическая связь связь

Химический связь Связь химическая

Элемент химический

Элементы химические химическая связь



© 2025 chem21.info Реклама на сайте