Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Висмут окислительно-восстановительные потенциалы

    Довольно подробно исследовалось восстановление перрената металлами и амальгамами. А. И. Лазарев [62] изучал восстановление перрената амальгамами цинка, кадмия, свинца и висмута на фоне соляной и серной кислот различной концентрации и установил, что на глубину восстановления влияет не только природа металла-восстановителя (т, е. его окислительно-восстановительный потенциал), но и природа и концентрация кислоты чем меньше концентрация кислоты, тем глубже заходит восстановление. Так, в серной кислоте ниже 3,6-н. амальгама цинка восстанавливает перренат до металлического и одновалентного рения, а в примерно 7-н. кислоте — до смеси двух- и трехвалентного. В соляной кислоте восстановление не доходит до металла, даже амальгамой цинка. Как правило, образуются смеси конов разной валентности, и только амальгама висмута, наиболее электроположительного из исследованных металлов, восстанавливает перренат в 18-н. серной кислоте до одной степени валентности (до пятивалентного). Это позволяет использовать амальгаму висмута для количественного определения рения — восстановленное соединение титруют бихроматом калия. В разбавленной серной кислоте амальгама висмута не реагирует с перренатом. [c.35]


    В бескислородных кислотах висмут нерастворим, хорошо растворяют его лишь азотная и концентрированная серная кислоты. Атом висмута обладает довольно большим сродством к электрону (окислительно-восстановительный потенциал системы В1 +/В1 равен всего +0,226 в), поэтому [c.240]

    Характеристика элемента. Ионизационный потенциал, электроотрицательность и окислительно-восстановительный потенциал рез-ро снижаются при переходе к висмуту. Восстановительная способ- [c.340]

    Металлический висмут восстанавливает Мо только до Мо , так как окислительно-восстановительный потенциал системы Мо /Мо более отрицателен  [c.296]

    При анодном растворении амальгамы висмута в концентрированной хлорной кислоте наблюдается накопление частиц одновалентного висмута [23]. Как и в случае одновалентной меди, сопряженное окисление и восстановление ионов 1п" и Вг" на металлической поверхности в отсутствие внешнего тока приводит к их гетерогенному диспропорционированию и к выделению соответствуюшего металла на этой поверхности [5, 6, 23, 24]. Как было показано [51, это явление необходимо учитывать при определении концентрации НВЧ путем измерения окислительно-восстановительного потенциала индикаторного электрода из индифферентного металла (платина, ртуть) 119, 25, 26]. Так, при введении индикаторного платинового электрода в раствор, содержащий металлический электрод (медь, кадмий, свинец) и одноименные ионы металла, потенциал индикаторного электрода совпадает с потенциалом основного металлического электрода [27]. Этот интересный эффект, свидетельствующий, по-видимому, о появлении в растворе соответствующих одновалентных ионов, может быть истолкован не только как результат установления на платиновом электроде окислительно-восстановительного равновесия [c.67]

    Окислительно-восстановительный потенциал металлического висмута равен 4-0,21 в. [c.31]

    Практически безвуальное изображение позволяют получать на оксигалогенид-ных висмутовых слоях медно-титановые, медно-железные и медно-аскорбиновые проявители. Высокая положительная величина стандартного окислительно-восстановительного потенциала системы Bi /Bi (0,27 В) дает возможность получать изображения на соединениях висмута химическим проявлением в растворах титана (III), олова (II) и формальдегида [304]. [c.289]

    При действии восстановителей на растворы молибденовых соединений образуются так называемые синие окислы , или молибденовая синь , представляющие собой соединения, содержащие шести- и пятивалентный молибден. Обычно образуются рентгеноаморфные продукты, однако Глемзер получил и кристаллические осадки гидратированных окислов, которым он приписывает формулы М08015(0Н) 16, Мо40п(0Н)2 и М0204(0Н)2. Эти соединения, в противоположность аморфным, устойчивы в щелочах и в растворах аммиака [38]. Реакция образования молибденовой сини — весьма чувствительная реакция на молибден (значительно более чувствительная, чем аналогичная реакция на вольфрам), широко используется в различных вариантах как для определения самого молибдена, так и элементов, связанных с ним в комплексные соединения (например, фосфора в комплексной фосфорномолибденовой кислоте, германия в германомолибденовой кислоте и т. д.). Окислительно-восстановительный потенциал системы Мо /Мо равен +0,5 в, поэтому для восстановления можно применять растворы двухвалентного олова или трехвалентного титана ( о систем 8п +/3п2+ и Т1 +/Т1 + менее положительны) или различные менее электроположительные металлы — олово, висмут, свинец, кадмий, цинк и др., а также некоторые органические соединения, например глюкозу. [c.54]

    Цинк и кадмий близки друг другу, в то же время ртуть заметно отличается от них как по своему агрегатному состоянию, так и но химическому поведению. Например, она образует ион Ндз, где формально ее степень окисления +1 имеет аномально высокий потенциал ионизации и отличается от цинка и кадмия положительным значением нормального окислительно-восстановительного потенциала, Цинк и кадмий вытесняют водород из разбавленных кислот, а ртуть нет. Радиусы атомов в подгруппе незначительно возрастают от цинка к ртути, а радиусы ионов увеличиваются довольно резко. Соответствеино этому увеличивается доля ковалентной составляющей в связи с электроотрицательными элементами и падает растворимость оксидов и сульфидов. Гидроксид цинка 2п(ОН)2 амфотерен, Сс1(0Н) проявляет более основные свойства, а Н (0Н)2 — соединение неустойчивое и представляет собой слабое основание. Аномалии в свойствах ртути объясняются так называемым эффектом инертной пары . Известно, что Л5 -электроны способны проникать к ядру сквозь экран из предшествующих электронов. Поэтому б5-электронная пара, несмотря на то, что расположена после полностью занятых 4/ - и 5й °-подуровней, очень З стойчи-ва к воздействиям. Этот эффект сказывается далее по периоду на свойствах таллия, свинца, висмута. Вероятно поэтому ртуть относится к благородным металлам, не вытесняющим водород из кислот. [c.300]


    Для всех солей висмута (независимо от степени окисления) характерна тенденция к гидролизу с образованием основных солей. Окислительно-восстановительный потенциал висмута таков, что его соли могут быть легко восстановлены в кислой среде цинком, железом, кадмием, оловол , фосфорноватистой кислотой, гидроксостан-нитом, а в щелочной среде — глюкозой, формалином и т. д. [c.515]

    При независимости плотности коррозионного тока к от потенциала (или при к = 0) уравнение (6. 8) означает, что для электролитов, свободных от окислительно-восстановительных систем , потенциал линейно растет со временем. Гюнтершульце и Бетц установили эту зависимость для анодного окисления алюминия, Висмута, ниобия, тантала, титана и церия. Напряженности [c.811]

    Большая группа ферроцианидных методов определения различных элементов основана на потенциометрических титрованиях с использованием окислительно-восстановительной системы [Fe( N)6l /lFe( N)e] . Появление скачка потенциала в точке эквивалентности обусловлено тем, что пока в растворе присутствует избыток ионов осаждаемого металла, весь вводимый в систед1у ферроциапид связывается в труднорастворимую соль и отношение концентраций [Fe( N)e] /lF6( N)e] остается практически постоянным. Вслед за достижением точки эквивалентности в растворе появляются свободные ионы [Ре(СК)б] , и отношение IFe( N)e] /iFe( N)e] резко изменяется. Таким образом могут определяться катионы лантана и церия [560, 764, 1015], тория [1016, 1239], таллия [896], висмута [1236, 1240], галлия [459, 602, [c.279]


Смотреть страницы где упоминается термин Висмут окислительно-восстановительные потенциалы: [c.283]    [c.159]    [c.40]    [c.174]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.465 , c.469 ]




ПОИСК





Смотрите так же термины и статьи:

Висмут окислительный потенциал, Bi III

Окислительные потенциалы окислительно-восстановительных

Потенциал окислительно-восстановительны

Потенциал окислительный



© 2025 chem21.info Реклама на сайте