Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород сольватация

    Сольватация тесно связана с процессом растворения. Вообще говоря, сольватация включает все типы взаимодействия между растворителем и ионами или молекулами растворенного вещества, поскольку нельзя провести никакого различия между свободными молекулами растворителя и молекулами растворителя, связанными с ионами или молекулами растворенного вещества (см. стр. 26 в работе [294]). Ионы или полярные молекулы в полярном растворителе ориентируются под действием электростатических сил, их энергия уменьшается и система становится более устойчивой. Величины энергии сольватации часто имеют тот же порядок, что и энергия ковалентных связей. Когда катионы или льюисовы кислоты сольватируются нуклеофильным растворителем, молекулы размещаются таким образом, что сольватируемые частицы окружаются оболочкой, вплоть до образования ковалентной связи электронодефицитные молекулы растворителя, не содержащие подвижного водорода (например, жидкая двуокись серы), взаимодействуют с электронодонорными анионами. В случае растворителей, содержащих подвижные, или кислые , атомы водорода, сольватация аниона может быть связана с кислотностью растворителя или его способностью образовывать водородную связь (ср. гл. 6, разд. 38,а и стр. 47 в работе [393]). Устойчивость образующихся таким образом аддуктов может быть самой различной. Вследствие энергетических затрат на образование водородных связей этот процесс понижает свободную энергию, например, аминов или амидов кислот отсутствие образования Н-связей увеличивает основность. Таким образом, становится понятным, что сила кислот и оснований в водных растворителях не всегда сравнима с этими Нле характеристиками, определенными в неводных растворителях. [c.99]


    Измайлов предложил пользоваться для всех растворителей единой водородной шкалой. Он определил разность теплот сольватации иона водорода при переходе от одного растворителя к другому и вычислил разницу в стандартных потенциалах водородного электрода в соответствующих растворителях. Полученные им данные, характеризующие влияние растворителя на потенциалы ряда электродов, приведены в табл. 10.3. [c.222]

    Отрицательные отклонения от закона Рауля. Для растворов характерно уменьшение давления пара по сравнению с идеальными растворами (рис. 92) Отрицательные отклонения обусловливаются большими силами притяжения между молекулами разных типов (взаимодействие А — В больше, чем А — А и В — В). Отрицательные отклонения наблюдаются у растворов, склонных к сольватации, гидратации и т. п. (например, вода и хлористый водород, вода и серная кислота и т. п.). Образование раствора такого типа, как правило, сопровождается уменьшением объема и выделением [c.197]

    ДЛЯ пиридиновых растворов не может быть рассчитано из-за отсутствия необходимых данных, но качественная оценка разности теплот сольватации ионов серебра и водорода указывает на то, что эта. величина на 5—10 ккал ниже, чем в воде. [c.196]

    В первом разделе книги излагаются методы изучения и современные представления о строении границ раздела металлических или полупроводниковых электродов с ионными системами (растворами, расплавами), а также границы раствор — воздух. Значительное внимание уделено термодинамике поверхностных явлений на электродах, адсорбирующих водород и кислород, и современной теории адсорбции органических соединений на электродах. Во втором разделе подробно анализируются закономерности стадии подвода реагирующих частиц к поверхности электрода, методы изучения этой стадии и приводятся примеры использования явлений массопереноса при конструировании хемотронных устройств и новых источников тока. Третий раздел посвящен изложению закономерностей стадии переноса заряженных частиц через границу электрод — раствор и физических основ элементарного акта электрохимических реакций. При этом рассматриваются такие важные в теоретическом отношении вопросы, как роль работы выхода электрона и энергии сольватации ионов в электродной кинетике. Теории двойного слоя, массопереноса и элементарного акта, по образному выражению А. Н. Фрумкина, — те три кита , на которых базируется мощное и стройное здание кинетики электродных процессов. [c.3]

    Из уравнений (IV,40) и (IV,40а) следует, что на их основании могут быть найдены разности химических энергий гидратации или сольватации ионов металла или соответственно ионов водорода и ионов металла. Например, можно высчитать разность химических энергий сольватации иона № и иона Ме+ но уравнению [c.165]

    Нахождение энергии сольватации отдельного иона, например иона водорода, основано на экстраполяции к Ип = О зависимости величин [c.170]

    ОТ величины 1/п2, найденных для различных значений п. Экстраполируемую величину находят как полусумму из сумм энергий сольватации иона водорода [c.170]

    И ионов галогенов и из разностей энергий сольватации иона водорода и ионов щелочных металлов. Суммы п разности энергий находят нз э. д. с. цепей без переноса и с переносом. [c.170]

    Именно высокими значениями протонного сродства молекул растворителя объясняется то обстоятельство, что кислоты практически не диссоциируют в вакууме и легко диссоциируют в растворе. Так, для отрыва протона от молекулы НС1 необходимо затратить (325 ккал/моль) 1385-Ю Дж/моль. Это протонное сродство ионов хлора. Необходимая для этого энергия компенсируется энергией сольватации протона(264 ккал/моль) 1100 X X 10= Дж/моль и энергией сольватации иона хлора (79 ккал/моль) 330 X X 10 Дж/моль, что в сумме дает (343 ккал/моль) 1333-10 Дж/моль, т. е. энергию, достаточную для того, чтобы процесс диссоциации хлористого водорода на ионы стал возможным. [c.197]


    Водородная связь между кислотой и основанием, например растворителем, двояко влияет на силу кислот. С одной стороны, образование продуктов присоединения поляризует молекулу кислоты и как бы подготовляет ее к дальнейшей диссоциации, но, с другой стороны, образование прочного продукта присоединения уменьшает активную массу диссоциирующей кислоты и тем самым уменьшает ее способность к диссоциации. Энергия, выделенная при образовании продукта присоединения, является результатом выделения энергии при образовании собственно водородной связи и поглощения энергии, затрачиваемой на деформацию связей между водородом и остальными атомами в молекуле, например, затратой энергии на деформацию связи ОН в молекулах фенолов и карбоновых кислот. Выделенная свободная энергия является результатом суммарного эффекта. Так как энергия выделяется, образование водородной связи уменьшает способность кислоты к диссоциации. Большая способность кислот к диссоциации в растворителях, образующих более прочные соединения, является результатом того, что, как правило, эти растворители более основные и характеризуются большей энергией сольватации ионов, и в первую очередь протонов. Большая энергия сольватации компенсирует уменьшение свободной энергии раствора при образовании водородной связи. В результате этого кислоты в таких растворителях диссоциируют сильнее. [c.294]

    Основания, способные к образованию водородной связи в качестве доноров протона (содержащие водород) и не способные к их образованию (не содержащие водорода), по-разному взаимодействуют с растворителями и эго взаимодействие сопровождается различным выделением энергии. Энергия сольватации ионов основания зависит от их химической природы. Можно ожидать большого различия во влиянии растворителя на алифатические и ароматические основания, которое будет следствием различного распределения заряда в катионе. [c.353]

    Из этого уравнения следует, что существенную роль играет основность растворителя. В зависимости от нее катионит может принимать свойства сильной или слабой кислоты. Константа обмена зависит также от различия в энергии сольватации ионов лиония МН+ и участвующего в обмене катиона К. Это объясняется тем, что характер связи водорода в ионите сильно отличается от характера связи иона металла. [c.370]

    Как было показано в гл, IV, этим уравнением можно воспользоваться для подсчетов разности энергий сольватации ионов водорода и ионов металлов. [c.391]

    Зависимость величины цепей без переноса, содержащих водородные электроды, уже не линейна благодаря особому механизму сольватации ионов водорода и большой энергии этого процесса (рис. 103). [c.394]

    В гл. IV мы уже касались этого вопроса. Данные об изменении энергии сольватации ионов водорода С сн+(Н20) (М) соответствующие этому изменению величины lg 7он+ аммиаке, муравьиной кислоте, метиловом и этиловом спиртах были рассчитаны на основании данных об энергиях сольватации ионов водорода в различных средах. Подсчет энергии сольватации ионов водорода и других ионов был произведен на основании данных об э. д. с. цепей, обратимых к двум катионам (см. табл. 36), и цепей без переноса, обратимых к катионам и анионам (см. табл. 14). [c.399]

    Все перечисленные выше методы не позволяют однозначно оценить кислотность неводных растворов в единой шкале. Вопрос об этой шкале может быть решен только на основании данных о величинах химической энергии сольватации протонов в различных растворителях. В настоящее время эти данные получены на основании подсчетов сумм и разностей химических энергий сольватации ионов в неводных растворах из данных об электродвижущих силах цепей без переноса и с переносом в неводных растворах. Путем экстраполяции величин суммарной энергии сольватации ионов водорода и ионов галогенов (ионы галогеноводородных кислот) и разностей энергий сольватации ионов водорода и ионов щелочных металлов, как было сказано в гл. IV, была определена энергия сольватации протона и других ионов в различных растворителях. [c.419]

    Отрицательные отклонения от закона Рауля характерны для растворов вода — хлористый водород, вода — серная кислота и т. п. Для данных растворов наблюдается уменьшение давления пара по сравнению с идеальными растворами (рис. 82). Отрицательные отклонения обусловливаются большими силами притяжения между молекулами разных типов (взаимодействие А — В больше, чем А — А и В — В). Отрицательные отклонения наблюдаются у растворов, склонных к сольватации, в частности гидратации и т. п. Образование раствора такого типа, как правило, сопровождается уменьшением объема и выделением теплоты, т. е. Аг <0 ДЯ<0. Поэтому теплота парообразования растворенного компонента оказывается больше, чем чистого компонента. Это затрудняет парообразование. Если отклонения от закона Рауля очень велики, кривая общего давления пара может иметь максимум или минимум, в зависимости от того, какие отклонения наблюдаются— положительные или отрицательные. [c.194]

    На основе синтеза представлений Аррениуса и гидратной теории Д. И. Менделеева И. А. Каблуков (1891) создал более точную теорию, согласно которой электролитическая диссоциация веществ на ионы сопровождается сольватацией, т. е. взаимодействием ионов с молекулами среды. Если средой является вода, то этот процесс называют гидратацией. Так, например, ион водорода Н в водном растворе соединяется с молекулой воды, образуя сложный ион гидроксония Н+ + Н20=Нз0+. Катион бериллия Ве + образует тетрагидрат [Ве(Н20)4] ион А " " — гексагидрат [А1 (НгО)б] Когда кристалл вещества с ионной связью попадает в растворитель, обладающий высокой диэлектрической проницаемостью, как, например, вода, то молекулы растворителя, взаимодействуя с ионами соли, разрушают ее кристаллическую решетку и в растворе образуются положительно и отрицательно заряженные ионы. Эти ионы связывают некоторое количество воды  [c.29]

    Интересно, что несмотря на существенные различия между газом и жидкостью в газах можно обнаружить явления, напоминающие растворение и сольватацию в жидких системах. Речь идет о так называемых кластерах в системах иои — газ. Систематическое изучение кластеров, состоящих из молекул растворителя, например воды и иона (катиона или аниона), началось с исследования продуктов, получающихся в масс-спектрометрах при сравнительно высоких давлениях (В. Л. Тальрозе). С конца пятидесятых годов и до настоящего времени в этой области накоплен довольно большой материал, позволяющий сделать общие выводы. Доказано, что катионы водорода и металлов, а также анионы галогенов в газовой фазе взаимодействуют с молекулами воды, причем собственно химическое взаимодействие, отличное от явлений гидратации в растворе, происходит сравнительно редко (так, ион лития образует дативную связь с неподеленной электронной парой кислорода молекулы воды за счет своей незаполненной орбитали химические связи с водой дает также ион фтора). [c.234]

    Исследование межмолекулярных взаимодействий. В ИК-спектрах веществ в жидкой фазе часто обнаруживаются полосы, которых нет у отдельных компонентов смеси. Такие полосы объясняются межмолекулярными взаимодействиями с образованием новых связей. Типичным примером может служить водородная связь, когда атом водорода, который связан в молекуле с электроотрицательным атомом, взаимодействует с атомом другой молекулы, имеющим неподеленную пару электронов. Так, в растворах спиртов полоса свободной гидроксильной группы наблюдается в области около 3625 см . Эта узкая полоса четко проявляется в разбавленных растворах (<0,01 моль/л) в инертных растворителях, когда все межмолекулярные связи разорваны. При увеличении концентрации спирта наблюдается широкая полоса, которая относится к ассоциированным гидроксильным группам, и интенсивность ее зависит от концентрации спирта. Наличие межмолекулярных взаимодействий необходимо учитывать при сравнении спектров веществ, снятых в разных растворителях, так как характеристические частоты некоторых групп могут изменяться в результате сольватации вещества растворителем. [c.219]


    Напротив, для таких прочно адсорбирующихся соединений, как нитросоединения, ацетиленовые углеводороды и т. п., вытесняющих водород с поверхности, эффект сольватации будет уменьшать их поверхностную концентрацию, улучшать активацию водорода и, как следствие этого, увеличивать скорость реакции в полном противоречии с выводами теории абсолютных скоростей реакций. С точки зрения потенциальных профилей реакции (рпс. 13) сольватация продуктов реакции не должна менять высоту энергетического барьера и, следовательно, скорость процесса. Между тем блокировка поверхности продуктами реакции — одна из основных причин изменения скорости реакции и ее порядка. Сольватация продуктов реакции, облегчающая их десорбцию с поверхности, может весьма существенно влиять на скорость процесса. [c.102]

    В этих реакциях эффекты растворителей, возможно, объясняются тем, что для отщепления атома водорода необходим радикал без специфической сольватации атома кислорода, тогда как в реакции разложения, вероятно, участвует специфически сольватированный радикал. В переходном состоянии реакции отщепления атома водорода сольватация грег-алкоксильного радикала вблизи атома кислорода создает пространственные препятствия, поэтому алкоксильный радикал должен сначала освободиться от молекул растворителя и только после этого может принять участие в отщеплении атома водорода. Напротив, разложение грег-алкоксильного радикала представляет собой мономолекулярный процесс, на который окружающие молекулы растворителя не влияют. Следовательно, специфическая сольватация радикала должна слегка замедлять скорость отщепления атома водорода, в то время как скорость разложения трег-ал-коксильного радикала не будет зависеть от специфической сольватации. Если же весь активированный комплекс сольватирован неспецифично, то скорость реакции фрагментации может возрасти (детальнее эта проблема обсуждена в работе [160]). [c.266]

    Кислотные свойства воды как растворителя [20, 21] обусловлены образованием гидроксониевого катиона Н3О+ (ситуацию упрощают и говорят об образовании иона водорода). Сольватация протонов в воде не завершается ионом Н3О+. Это более сложный процесс так, обнаружен достаточно устойчивый катион Н904  [c.56]

    Суммарные энергии сольватации электролитов для ряда растворов приведены в табл. 2.7. Они получены Измайловым на основе измерений электродвижущих сил соответствующих электрохимических систем. Нз табл. 2.7 следует, что энер1 ия сол1)Ватации электролита изменяется несущественно при переходе от одного растворителя к другому. Так, папример, для хлорида водорода максимальное отклонение энергии сольватации от его среднего значения (1382 кДж-моль- ), наблюдаемое в т(зм случае, когда растворителем служит аммиак, составляет 67 кДж.моль , т. е. около 5% обычно же оно не превышает 1—2%. Поскольку диэлектрические проницаемости растворителей, собранных в табл. 2.10, сильно отличаются друг от друга, такой результат указывает на их второстепенную роль в энергетике сольватации и на несовершенство метода Борна и других методов, в которых используется его модель растворителя. [c.67]

    Такнм образом, по Писаржевскому, переход ионов из металла в раствор совершается не за счет физически неясной электролитической упругости растворения металла, а в результате его взаимодействия с молекулами растворителя. Явление электролитической диссоциации электролитов и возникновение электродного потенциала основаны, следовательно, на одном и том же процессе сольватации (в случае водных растворов — гидратации) ионов. Из уравнения реакции (10.20) следует, что при растворении образуются не свободные, а сольватированные ионы, свойства которых зависят от и >ироды растворителя. Поэтому в отхичие от теории Нернста значение стандартного потенциала данного электрода должно меняться при переходе от одного растворителя к другому. Подобная зависимость была действительно обнаружена и послужила предметом исследований многих авторов (Изгарышева, Бродского, Плескова, Хартли, Измайлова и др.). Было установлено, что изменение электродного потенциала при переходе от одного растворителя к другому оказывается тем большим, чем М зньше радиус и выше заряд иона, участвующего в электродной реакции. По Плескову, меньше всего изменяются потенциалы цезиевого, рубидиевого и йодного электродов, в установлении равновегия на которых участвуют одновалентные ионы значительных размеров. Напротив, эти изменения особенно велики в случае ионов водорода и поливалентных катионов малых размеров. Именно такой зависимости электродных потенциалов от природы растворителя следовало ожидать на основе представлений Писаржевского о роли сольватационных явлений в образовании скачка потенциала металл — раствор. Для количественного сравнения потенциалов в разных растворителях применяют в качестве стандартного нулевого электрода цезиевый [c.221]

    Сольватация — взаимодействие абсорбента и растворяемого вещества с образованием ассоциированных групп частиц. Способность к сольватации объясняется дипольным характером строения молекул. Ярко выражен дипольный характер молекул воды иа атомах водорода имеются эффективные положительные заряды, а на атоме кислорода — эффективный отрицательный заряд. При сольватации заряженные частицы или полярные молекулы растворяемого вещества как бы обволакиваются (окружаются) молекулами поглотителя, соориентированными в соответствии с их зарядами. Сольватация — дипольное взаимодействие молекул абсорбента и абсорбируемого вещества. [c.70]

    Указанные явления имеют два отрицательных последствия. Первое -это резкое возрастание нерационального расходования водорода на побочные реакции гидрирования. Второе — снижение содержания аренов, которые, как известно лиофильны к асфальтенам и смолам и обладают повьпиенной склонностью к сольватации с этими компонентами, тем самым способствуют растворению и разложению надмолекулярных [c.54]

    Известно, что ионы не существуют в водном растворе в свободном состоянии, они гидратированы (сольватированы). Уравнения электролитической диссоциации не учитывают этого. Запись уравнений диссоциации с учетом сольватации принципиально более правильна, однако такая запись при отсутствии точных данных о сольватации практически ничего не дает, и поэтому для простоты будем условно писать уравнения для электролитической дисссциации и для ионных реакций в растворах без учета сольватации ионов (кроме иона водорода — гидроксония Н3О ). Однако о наличии сольватации и о ее важной роли следует всегда помнить. [c.389]

Рис. 5-4. ОтносительР1ая прочность сольватации иона водорода в жидком аммиаке (а), воде (б) и диэтиловом эфире (й). Связь между протоном и сольватирующими молекулами аммиака чрезвычайно прочна, поэтому жидкий аммиак отщеп Еяет протоны даже от тех веществ, которые в водном растворе являются лишь слабыми кислотами, и превращает их в сильные кислоты. В отличие от этого диэтиловый эфир настолько слабо сольватирует протон, что многие вещества, растворы которых в воде представляют собой сильные кислоты, в диметиловом эфире способны удерживать С1ЮИ протоны и оказываются в нем лишь частично диссоциированными слабыми кислотами. Знаки плюс и минус означают частичные заряды, обусловленные локальным дефицитом и избытком электронов соответственно. Рис. 5-4. ОтносительР1ая прочность сольватации иона водорода в жидком аммиаке (а), воде (б) и диэтиловом эфире (й). Связь между протоном и сольватирующими молекулами аммиака чрезвычайно прочна, поэтому жидкий аммиак отщеп Еяет протоны даже от тех веществ, которые в водном растворе являются лишь слабыми кислотами, и превращает их в сильные кислоты. В отличие от этого диэтиловый эфир настолько слабо сольватирует протон, что многие вещества, растворы которых в воде представляют собой сильные кислоты, в диметиловом эфире способны удерживать С1ЮИ протоны и оказываются в нем лишь частично диссоциированными слабыми кислотами. Знаки плюс и минус означают частичные заряды, обусловленные локальным дефицитом и избытком электронов соответственно.
    Расчет значений и р дает важные сведения о взаимодействии иона металла с лигандом. Так, например, установлено, что щестикоор-динационные комплексы никеля с амида.ми типа R ON(R2)Rз характеризуются меньщими Од и р, если R, и R2 — алкильные группы, а не атомы водорода. В то же время известно, что по отнощению к фенолу и иоду донорная способность этих амидов увеличивается с ростом числа алкильных групп. Поэтому было высказано предположение, что между соседними координированными. молекулами амида [14] в комплексах металлов возможны пространственные взаимодействия. Исследование комплексов никеля (II) некоторых первичных алкила.минов показало, что если даже вода замещает в комплексах амины, они взаимодействуют с никелем более сильно, чем вода, и почти так же сильно, как аммиак [19]. Авторы работы [20] сообщили также о высоких значениях Од для никелевых комплексов этилени.мина [20]. При объяснении причин неустойчивости алкиламинных комплексов в воде учитывалась энергия сольватации [19]. [c.98]

    По вопросу о взаимодействии между водородом и каталитической системой авторы настоящей статьи придерживаются той точки зрения, что вследствие высокой энергии связей в молекуле водорода обе частицы, на которые. раопадаегся молекула водорода, должны стабилизироваться либо путем образования новой связи (с катализатором или с молекулой растворителя), либо в результате сольватации в среде, обладающей высокой диэлектрической постоянной. Это относится к каталитическим процессам, нротекаюнцгм под действием как растворенных соединений [c.218]

    Тогда е киол можно измерить как потенциал погруженного а раствор платинового электрода, насыщенного водородом, если активности кислоты и сопряженного с ней основания равны. Это всегда имеет место в случае чистого растворителя. Растворители, таким образом, можно расположить в порядке возрастания нормальных кислотных потенциалов. Однако при измерении этих потенциалов появляются значительные ошибки, связанные с наличием диффузионных потенциалов на границе раздела растворителей, включенных в измерительную ячейку. Для их устранения электрод сравнения, применяемый при из-МбНСНИИ ё кисл необходимо заполнять тем же растворителем, какой находится в измерительной ячейке. Нормальный потенциал каждого обратимого к ионам электрода зависит от энер- ии сольватации соответствующих ионов, различной для разных растворителей. Поэтому В. А. Плесков предложил в качестве стандарта использовать малополяризуемые ионы с возможно большими диаметрами, такие, как КЬ+ или Сз+. Энергия сольватации этих ионов мала и почти не меняется ири переходе от растворителя к растворителк . Применив стандартный рубидиевый электрод, Плесков показал, что константы диссоциации сильных кислот в муравьиной кислоте в 10 раз больше, а в безводном гидразине в 10 раз меньше, чем в во- [c.339]

    Как следует из теоретических и экспериментальных исследований автора по влиянию растворителей на силу кислот и из теоретических работ Соколова, вторая стадия процесса возможна только в достаточно полярной среде благодаря сольватации ионов и не возможна в вакууме, где более вероятной является диссоциация продукта присоединения не на ионы, а на молекулы. Систематические исследования взаимодействия кислот с основаниями в инертных растворителях выполнены Барроу с сотрудниками. На основании изучения инфракрасных спектров они показали, что уксусная кислота и ее галоидзамещенныс образуют с алифатическими аминами и пиридином два ряда продуктов присоединения неионизированные продукты присоединения, образованные за- счет водородной связи между кислотой и основанием, и ионизированные продукты присоединения, в которых водород уже передан основанию и образовал ионы. Последние вследствие низкой диэлектрической проницаемости растворителя не существуют самостоятельно, а включены в ионные нары. Мея ду катионом, полученным в результате передачи протона основанию, и анионом также,возникает водородная связь [c.293]

    Наиболее детально роль координации при гидрироваиии на металлах в жидкой фазе рассмотрена Д. В. Сокольским и Я. Дор-фманом. Предлагаемая концепция не конкретизирует во1прос об участии строго определенных орбиталей металла и реагируюш,их веществ в процессах адсорбции и катализа, но позволяет достаточно надежно прогнозировать катализаторы для заданной реакции, а та/кже позволяет объяснить роль и влияние посторонних катионов в растворе на свойства катализаторов, предсказать влияние эффекта сольватации, давления водорода и т. п. [c.171]

    В газовой фазе образование протона затруднено из-за высокой энергии ионизации атомарного водорода. В растворе же протон подвергается сольватации с выделе[шем значительного количества энергии, которая компенсирует энергетические затраты на образование протона. Эти соображения делают понятным тот факт, что в растворах и других конденсированных средах протон существует не в свободном состоянии, а в виде ассоциатов с растворителем, т. е. сольватов. Стремление протона к ассоциации с другими атомами и молекулами объясняется его малым размером м) по срав- [c.104]

    В газовой фазе образование протона затруднено из-за высокой энергии ионизации атомарного водорода (1312 кДж/моль). В растворе же протон подвергается сольватации с выделением значительного количества энергии, которая компенсирует энергетические затраты на образование протона. Эти соображения делают понятным тот факт, что в растворах и других конденсированных средах протон существует не в свободном состоянии, а в виде ассоциатов с растворителем, т.е. сольватов. Стремление протона к ассоциации с другими атомами и молекулами объясняется его мадым размером ( Ю" м) по сравнению с размерами атомов и молекул ( lO io м), а также его уникальной способностью поляризовать электронные оболочки взаимодействующих с ним атомов и молекул. В случае воды протон с молекулой воды образует ион гидроксония НдО . Аммиак и фторид [c.298]


Смотреть страницы где упоминается термин Водород сольватация: [c.394]    [c.197]    [c.162]    [c.347]    [c.243]    [c.52]    [c.269]    [c.571]    [c.84]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.558 ]




ПОИСК





Смотрите так же термины и статьи:

Сольватация



© 2025 chem21.info Реклама на сайте