Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Заряд иона и химические свойства

    Химическое строение. Различие в химических свойствах используемых для получения мембран полимерных материалов может быть сведено к разнице в полярности молекул и их размеров. Полярность, которая с физической точки зрения характеризует неравномерность распределения электронных облаков, на химическом уровне количественно описывается такими показателями, как плотность заряда, дипольный момент и способность к образованию водородной связи. Хотя ионы и можно классифицировать как крайний случай полярных частиц, наиболее часто на практике их рассматривают отдельно. [c.65]


    При адсорбции из растворов, наряду с поглощением нейтральных молекул, может происходить и адсорбция ионов, содержащихся в растворе. Это приводит к некоторым своеобразным явлениям. Например, основной (по своим химическим свойствам) краситель, у которого окрашенный ион заряжен положительно, адсорбируется преимущественно на электроотрицательных (кислотного характера) адсорбентах, и наоборот. Подобные процессы называются полярной адсорбцией и обычно сопровождаются явлением обмена ионами ионного обмена) между адсорбентом и раствором — явле нием, называемым обменной адсорбцией. Так, метиленовая синяя — основной (по химическим свойствам) краситель, адсорбируется отрицательно заряженными гелями, в частности гелем кремневой кислоты. При этом, однако, на кремневую кислоту переходит лишь положительно заряженный ион красителя, а отрицательный ион (ион хлора) остается в растворе. Компенсация зарядов этих анионов достигается тем, что из кремневой кислоты переходит в раствор ион натрия, который в небольшом количестве почти всегда содержится в геле кремневой кислоты при обычных способах его приготовления. [c.372]

    Необходимо учитывать также, что ионы того и другого знака, взаимодействуя с молекулами воды, гидратируются и что электрическое поле, создаваемое электродом, и электрические поля, возбуждаемые ионами, действуют и на молекулы воды, способствуя соответствующей их ориентации, деформируя их и изменяя состояние и структуру самой воды. Равновесие при этих изменениях достигается не мгновенно, в особенности при низких температурах ( 61), где релаксационный характер его должен проявляться более отчетливо. Кроме того, само взаимодействие ионов с молекулами воды изменяется под действием поля и неодинаково для различных зон двойного слоя. При этих взаимодействиях сказывается не только величина заряда иона, но размеры иона и его химические свойства. [c.417]

    Химические свойства 4/-элементов (лантаноидов) в основном схожи со свойствами лантана, поэтому разделение лантаноидов (называемых также редкоземельными элементами) сильно затруднено. Поскольку 4/-электроны слабо экранируют заряд атомного ядра, размеры ионов лантаноидов +3 уменьшаются от Ьа к Ьи они мало отличаются от размеров иона У +, принадлежащего предыдущему периоду. Этот эффект получил название лантаноидного сжатия. Он проявляется и у соответствующих пар элементов других побочных подгрупп — циркония 7г и гафния Н в IV группе, ниобия КЬ и тантала Та в V, молибдена Мо и вольфрама в VI группе. [c.153]

    Одним из кардинальных вопросов теории экстракции является априорное предсказание экстракционной способности экстрагента на основании его физико-химических свойств. Большинство исследователей считает, что экстракционная способность для неэлектролитов должна быть связана с параметрами растворимости, для электролитов — с фундаментальными свойствами экстрагентов, например спектральными характеристиками (ИК-спектры), электроотрицательностью и реакционной способностью отдельных групп, входящих в состав молекулы экстрагента, дипольными моментами, зарядом и размером ионов, диэлектрической проницаемостью сред и т. д. [59-62]. [c.16]

    Химические свойства элементов и их соединений являются периодической функцией заряда ядра атома. С ростом заряда ядра, т.е. порядкового номера элемента, периодически меняются строение двух внешних электронных оболочек, радиусы атомов, радиусы и заряды ионов. Эти факторы определяют валентность элемента, его окислительно-восстановительную способность и кислотно-основную характеристику. Количество электронов на двух оболочках (предпоследний и наружный слои) приведено в табл. 4, радиусы атомов — в табл. 5. [c.12]


    Теория электролитической диссоциации Аррениуса дала возможность объяснить не только причины отклонения растворов электролитов от законов Вант-Гоффа и Рауля, но и объяснить многие особенности химических свойств электролитов (реакции гидролиза, значение концентрации водородных ионов и др.). Однако она имела и ряд недостатков, в частности не учитывала взаимодействия между ионами в растворе, вызываемого их электрическими зарядами. [c.112]

    Электронные конфигурации атомов и ионов элементов периодической системы. Первоначально в таблице периодической системы Д. И. Менделеева (1869 г.) элементы были расположены на основании их атомных масс и химических свойств. В действительности оказалось, что решающий фактор при этом — не атомная масса, а заряд ядра и, соответственно, число электронов в нейтральном атоме. Применение трех положений, определяющих распределение электронов в многоэлектронных атомах, позволяет объяснить оболочечную структуру атомов и принципы построения таблицы периодической системы элементов (ПС). [c.64]

    У элементов одного периода при переходе от щелочного металла к благородному газу заряд ядра увеличивается, а радиусы атомов и ионов в малых и больших периодах уменьшаются, потенциалы ионизации, сродство к электрону и электроотрицательность увеличиваются. В итоге изменяются химические свойства и термодинамические характеристики. Это общая закономерность изменения свойств в малых и больших периодах наиболее ярко она выражена [c.85]

    Проявление химических свойств растворов электролитов определяется свойствами ионов (их зарядом, размером, электронным строением), а также свойствами среды и внешних условий. [c.223]

    Химические свойства растворов электролитов определяются свойствами их ионов зарядом, размером, электронным строением. Кроме того, важную роль играет среда, в которой протекают процесс и внешние условия. В растворе и газообразном состоянии при обычных условиях различно заряженные частицы (ионы) находятся как смеси, в которых соотношение катионов и анионов принимает строго определенные значения, что приводит к электронейтральности смеси. [c.36]

    Ионы различных типов химически отличаются от аналогичных им атомов или незаряженных радикалов. Электрохимические представления связали атом вещества с электрическим зарядом и показали, что свойства материи зависят от этого заряда. Так, натрий вытесняет водород из воды при этом получается ион натрия, который уже более не в состоянии реагировать с водой. Ион Сц2+ обладает химическими свойствами, весьма отличными от свойств атома меди ион Н+ ведет себя иначе, чем атом водорода, и т. д. [c.69]

    В 26 было показано, что на границе соприкосновения двух различных тел возникает электрический заряд, вызванный выравниванием электрохимических потенциалов электронов или ионов в соприкасающихся телах. Поверхность и объем одного и того же кристалла обладают неодинаковыми физико-химическими свойствами и могут поэтому рассматриваться как два находящихся в контакте разнородных тела. Ниже мы рассмотрим поверхностные свойства полупроводников на примере германия и кремния. [c.204]

    Если бы нейтральные атомы и элементарные ионы (т. е. ионизированные атомы) представляли собой бесструктурные шары, свойства их определялись бы величинами только зарядов и радиусов. Однако в действительности громадное значение имеет структура электронных оболочек. Как правило, решающую роль для определения важнейших химических свойств играет при этом самая внешняя оболочка. Уже гораздо менее резко выражена зависимость свойств атомов и ионов от второго снаружи слоя (причем влияние его структуры сказывается тем слабее, чем больше электронов в самом внешнем и меньше их в рассматриваемом втором). Значение структуры еще глубже лежащих электронных слоев обычно (кроме атомов лантанидов и актинидов) сводится почти к нулю. Поэтому при выделении аналогов можно в первом приближении считаться со структурой только внешней оболочки, учитывая особенности и второй лишь по мере надобности (главным образом в атомах переходных металлов). [c.233]

    Исследования электрической проводимости растворов, а также изучение спектров ЭПР показало, что в системах типа ионы — растворитель наряду со свободными ионами существуют и ионные пары , которые движутся как одно целое и не дают вклада в проводимость. Представление о ионных парах в 1924 г. были выдвинуты В. К. Семеновым и в 1926 г. Бренстедом. Одно из первых наблюдений, подтвердивших теорию ионных пар, было сделано Крауссом, обнаружившим, что хлорид натрия в жидком аммиаке сравнительно слабо проводит ток. Бьеррум указал, что, увеличивая расстояние между ионами, можно определить некоторое критическое его значение, такое, что ионы, удаленные на расстояние, большее критического, почти свободны, а ионы, находящиеся друг от друга на меньшем расстоянии, связаны. В настоящее время ионные пары рассматривают как частицы, обладающие совокупностью индивидуальных физико-химических свойств, находящиеся в термодинамическом равновесии со свободными ионами. Энергия связи в ионных парах в основном электростатическая, хотя дипольные и дисперсионные силы также вносят некоторый вклад в энергию взаимодействия. Несомненно и то, что свободные ионы в общем случае нарушают структуру растворителя, в результате чего достигается дополнительная стабилизация ионных пар. Если исходные молекулы растворяемого вещества содержат ковалентные связи А В, то образование ионной пары А+, В- может стимулироваться действием растворителя стабилизация пары достигается за счет энергии ее сольватации. Важную роль при этом играет способность молекул растворителя проявлять донорно-акцепторные свойства. Так, перенос электронного заряда на А, естественно, облегчает перенос а-электрона от А к В, что создает условия для гетеролитического разрыва связи А В и способствует возникновению ионной пары. Этот вопрос в более широком плане обсуждается в концепции, развитой В. Гутманом. [c.259]

    К химическим свойствам относится способность элементов и их соединений вступать в химические реакции. Наиболее важные аналитические свойства — это способность элемента образовывать различные типы ионов (в том числе комплексные), окислительновосстановительные и кислотно-основные свойства. Все эти свойства определяются периодическим законом Д. И. Менделеева, являющимся основой современной химической теории. Из этого закона следует, что свойства химических элементов зависят от электронного строения атомов и закономерно изменяются по мере увеличения зарядов ядер атомов. [c.32]

    Многие закономерности химических свойств элементов могут быть объяснены на основе рассмотрения их ионного потенциала 2+/г (2 — заряд катиона г — его радиус). На рис. 2.2 приведена ориентировочная схема изменения свойств ионов в зависимости от их положения в периодической системе элементов. Стрелками показано направление увеличения положительных зарядов ионов радиусов г и величин 7+/г. В периодах слева направо увеличиваются прочность химических соединений (малорастворимых и комплексных) и окислительные свойства ионов. [c.33]

    По химической активности и другим химическим свойствам больше всего к щелочным металлам должны приближаться элементы, соседние с ними в периодической системе, образующие главную подгруппу П группы, особенно с большими порядковыми номерами, вследствие этого большими размерами атомов и особенно слабой связью внешних, или валентных, электронов. От атома соседнего щелочного металла атомы элементов рассматриваемого семейства отличаются лишней единицей положительного заряда ядра и добавочным электроном во внешнем слое. Отдавая оба валентных электрона, они обращаются в двукратно положительно заряженные ионы, поэтому во всех соединениях положительно двухвалентны. В качестве представителя таких металлов рассмотрим кальций. [c.132]


    В настоящее время под термином водородное перенапряжение понимают замедленное протекание элементарного электродного акта разряда ионов водорода, возникающее вследствие торможения процесса переноса заряда через границу раздела металл — полярная жидкость. Константа скорости электродного процесса при этом зависит от потенциала электрода. Подобные реакции в газовых средах протекают мгновенно, при гетерогенной же электрохимической реакции на скорость перехода заряда через фазовую границу существенно влияют структура электрода, его физико-химические свойства и свойства полярной жидкости — электролита. [c.327]

    С открытием изотопии потребовало уточнения само понятие- химический элемент (I 3). В самом деле, например, тесть, изотопов криптона можно было бы считать или за шесть отдельных элементов или за разновидности одного и того же. Так как определяющим для химических свойств атомов является не масса, а заряд ядра, более рационально второе толкование. Обобщая под понятием атома также соответствующие элементарные ионы,, можно поэтому определить химический элемент как вид ато- [c.503]

    Использование внешнего силового полп приводит к тому, что затрата энергии на процесс очистки предельно разбавленных растворов зависит уже не только от концентрации примеси, но и от ее физико-химических свойств (масса молекулы, заряд ионов и т. д.), [c.11]

    Прежде чем изучать химические свойства катионов, следует сначала обсудить строение изолированных катионов — их размеры, заряд, ионный потенциал, после чего можно уже перейти к рассмотрению того, как все эти характеристики катионов сказываются на взаимодействии с другими окружающими их частицами. [c.343]

    Отдельное рассмотрение распределения простых неорганических кислот между двумя несмешивающимися растворителями позволяет обратить внимание на ряд факторов, характерных для экстракции гидратированных ионных соединений и отличающих их поведение от поведения ковалентных молекул. Ранее отмечалось, что экстракция ковалентной молекулы из водного раствора возможна, по существу, любым органическим растворителем, который не смешивается с водой, хотя специфические эффекты и изменяют в ряде случаев коэффициент распределения. Однако небольшие ионные формы относительно сильно сольватированы в водном растворе высокополярными молекулами воды, причем степень сольватации зависит от плотности их заряда и химических свойств. В связи с этим они обладают малой тенденцией к экстракции неполярными, некоординирующимися растворителями, которые не могут компенсировать возникающие потери энергии гидратации. Подобные же причины определяют, без сомнения, и нерастворимость ионных кристаллов в таких растворителях. Только те растворители, которые могут обеспечить первичную сольватацию и (или) представляют собой среду с высокой диэлектрической проницаемостью, способны преодолеть силы, удерживающие кристалл. [c.47]

    В 1829 г. немецкий химик Иоганн Дёберейнер обнаружил существование нескольких групп из трех элементов (триад) со сходными химическими свойствами. В каждой триаде атомная масса среднего элемента оказалась приблизительно равной среднему арифметическому из атомных масс двух крайних элементов. Парь каждого элемента в триаде хлор, бром и иод окрашены и состоят из двухатомных молекул. Каждый из этих трех элементов соединяется с металлами и имеет соединительный вес, равный атомному весу (массе) этого элемента. Каждый элемент образует с кислородом ионы, обладающие одним отрицательным зарядом СЮ", IO3", BrOj и lOj. Атомная масса брома (80) приблизительно совпадает со средним арифметическим из атомных масс хлора (35,5) и иода (127). В табл. 7-1 указано сходство между элементами этой и других триад. [c.303]

    Нетрудно сообразить, что поскольку щелочноземельные металлы Ве, Mg, Са, 8г и Ва очень сходны по своим химическим свойствам, их следует расположить друг под другом, как это и сделано на рис. 7-3. Каждый период завершается элементами с неметаллическими свойствами, и О, 8, 8е и Те образуют семейство элементов с валентностью 2, у которых при переходе от О к Те постепенно нарастают металлические свойства О-типичный неметалл, а Те располагается в особой пограничной зоне таблицы между металлами и неметаллами, где находятся так называемые семиме-таллы ( полуметаллы ), или металлоиды. Элементы К, Р, Аз, 8Ь и В1 образуют семейство, отличительной особенностью элементов в котором является способность присоединять три электрона в некоторых соединениях, а также постепенный переход от неметаллических свойств у N и Р к семиметаллическим у Аз и металлическим у 8Ь и В1, Элементы С, 81, Се, 8п и РЬ также образуют семейство, характерным свойством элементов в котором является валентность 4. Для этих элементов пограничная линия между металлами и неметаллами располагается на один период выше С-типичный неметалл, 81 и Ое-семиметаллы, а 8п и РЬ металлы. Наконец, семейство элементов В, А1, Са, 1п и Т1 образует ионы с зарядами + 3  [c.314]

    Сольватация частиц лиофобных золей в основном обусловлена наличием у них заряда подобно тому, как в растворах электролитов заряд ионов является одной из основных причин их сольватации. При этом ббльша величина заряда частиц приводит к более сильной поляризации связываемых молекул и соответствующему изменению других свойств их. В водных растворах такие дополнительно поляризованные молекулы воды способны сильнее связывать другие молекулы воды, в некоторой степени усиливая и их поляризацию. Конечно, сольватация зависит не только от зарядов частицы, но и от их химического состава.  [c.518]

    Пока атомы теряют свои электроны, а число положительных зарядов в их ядрах остается неизменным, химические свойства соответствующих ионов также не изменяются. На этом основана возможность получения плазмы с восстановительными, окислительными или нейтпальны-ми свойствами, применяемой, в частности, для нужд высокотемпературной металлургии. [c.234]

    Поскольку у лантаноидов электроны заполняют трлько 4/-уровень, с ростом заряда ядра происходит сжатие электронной оболочки ( лантаноидное сжатие ). В связи с большой близостью ионных радиусов лантаноиды обнаруживают пгубо-кую аналогию в химических свойствах (экранирование 4/-орби-талей электронами 5s- и 5р-орбиталей). Несколько большее различие в свойствах проявляют скандий, иттрий и лантан. [c.608]

    Электрохимия — раздел физической химии, в котором изучаются физико-химические свойства ионных систем (растворов, расплавов или твердых электролитов), а также явления, возникающие на границе двух фаз с участием заряженных частиц (ионов и электронов). В двухфазной электрохимической системе одна из фаз — чаще всего металл или полупроводник, другая — раствор или расплав электролита. В этом случае электрохимию определяют как науку, изучающую взаимодействие зарядов металла или полупроводника с ионами и молекулами раствора или расплава. Если система неравновесна, такое взаимодействие сопровождается возникновением в цепи, содержащей фазы, электрического тока. Учитывая это, дают еще более узкое определение электрохимии как науки, изучающей физико-химические процессы, сопровождающиеся появлением электрического тока или происходящие под действием на химические соединения электрического тока. [c.139]

    Прп рассмотрении прочности ацидокислот и их солей приходится учитывать много факторов заряд центрального атома и его радиус, свойства лигандов, их радиусы, способность к поляризации, физические и химические свойства ионов внешней сферы. Например, ионы трех- и четырехвалеитных металлов, особенно платиновые металлы, дают прочные комплексы. Ион NO3- дает мало прочные, ионы S N , С2О42- дают, как правило, прочные комплексы. [c.63]

    Атом водорода —простейший из всех, которые изучает химия. Решение уравнения Шредингера для него позволило определить стационарные состояния атома, рассчитать его спектр и распределение электронного заряда внутри атома и обьяснить на основе этого его химическое поведение. Обобщение получеггных выводов в сочетании с некоторыми добавочными принципами позволило понять физическую сущность периодического закона и объяснить химические свойства элементов. Поэтому знакомство с химическими системами начинаем с атома водорода и водородоподобных атомов (одноэлектронных атомов с зарядом ядра 4-Ze). Примером водородоподобных систем служат ионы Не , Li +, Ве - и т. д. [c.16]

    Электрохимические реакции, протекающие на iлpalHИlцe раздела двух фаз, совершаются при наличии двойного электрического слоя из зарядов, находящихся в металле, и ионов другого знака в растворе. Подобные ионные двойные слои, возникающие на границе соприкосновения фаз, приводят к глубоким изменениям физико-химических свойств поверхностных слоев. Процесс ионного обмена протекает таким образом, что значение электродного потенциала отвечает термодинамическому равновесию между металлом и электролитом. [c.6]

    Рассматривая физические и химические свойства лантапидов, необходимо учитывать особенности изменения атомных и ионных радиусов этих элементов. Из табл, 1.7 видно, что атомные, а также ионные радиусы от Ьа к Ьи уменьшаются У по величине радиуса близок к ТЬ н Оу, а 5с — к Ьи. Уменьшение радиуса лаитанидов с ростом их атомного номера носит название лантанидное сжатие . Причиной лантанидного сжатия является возрастающее притяжение внешних электронных оболочек (характеризующихся главным квантовым числом /г=5 и л=6), увеличивающимся от Ьа к Ьи зарядом ядра. В одной клетке периодической системы вместе с Ьа располагается еще 14 элементов, тогда как в клетках более легких элементов-аналогов подгруппы скандия (8с, У) в I и П большом периодах находится только по одному элементу. Поэтому явление, аналогичное лантанид1гому сжатию, в этих периодах не наблюдается. В то же время величины атомных и ионных радиусов переходных элементов, стоящих в П1 большом периоде за Ьа—Ьи, из-за лантанидного сжатия очень мало отличаются от таких же величин для их легких аналогов. Так, практически одинаковы радиусы 2г и Н1, мало различаются радиусы МЬ и Та, и дальше по периоду влияние лантанидного сжатия продолжает еще долго сказываться. [c.67]

    Напротив, если химические свойства малораспространенных элементов, зависящие прежде всего от заряда и радиуса образуемых ими ионов, существенно отличаются от свойств элементов, широко распространенных (т. е. с атомными ядрами высокой устойчивости), то минералы, образованные малорасиространенными элементами, не находят себе носителя кристаллизации и поэтому дольше других элементов сохраняются в расплаве. Такая задержка кристаллизации способствует концентрированию данного минерала в остаточном расплаве. Часто именно такие расплавы увлекаются водяным паром в трещины застывшей силикатной магмы и там застывают в виде пегматитовых жил ( остаточная кристаллизация). Поэтому пегматиты часто содержат собственные минералы многих редких элементов (без матрицы, образованной минералами широко распространенных элементов). [c.245]

    В этих равновесиях Ап обозначает матрицу анионообменного сорбента, несущую один положительный заряд. В соответствии с равновесием (99) поглощение анионов затруднительно в силънощелочных растворах. В то же время щелочи можно использовать для вытеснения из анионита всех поглощенных ионов. Однако, если при этом комплексные ионы разрушаются с образованием гидроксидов металлов, регенерация не эффективна. Поэтому для регенерации анионитов часто используют соляную кислоту, переводящую их в СР-форму. Следует, однако, учитывать, что металлы, образующие прочные хлоридные комплексы, например Pt le , могут поглощаться анионитами из солянокислых растворов. В подобных случаях необходим тщательный выбор регенерирующего раствора на основе химических свойств поглощенных ионов. [c.149]

    Электроны 4/-060Л0ЧКИ в реакциях участия не принимают, поэтому многие химические свойства лантаноидов оказываются сходными. Радиусы трехзарядных положительных ионов этих элементов уменьшаются от лантана (0,104 нм) до лютеция (0,084 нм) вследствие возрастания заряда ядра при неизменном числе электронных оболочек. Сокращение радиуса, называемое лантаноидным сжатием, является причиной ослабления основных свойств гидроксидов по мере роста порядкового номера лантаноидов. Так, гидроксид лантана — довольно сильное основание, тогда как эти свойства у гидроксида лютеция выражены очень слабо. Заполнение 4/-060ЛОЧКИ происходит так,- что в атоме церия в ней сразу появляются два электрона, а в атоме лантана эта оболочка вообще не содержит элекронов. В результате этого лантаноидов оказывается 14, если не относить к ним сам лантан, но причислить лютеций. Потенциалы ионизации лантаноидов лежат в пределах от 37 до 41 эВ для процесса Ме—>-Ме +. [c.207]

    Существование в Периодической системе вставных d и /-рядов существенно влияет на ионизационные потенциалы и атомные (ионные) радиусы последующих элементов. Особенно велико влияние заполненного 4/1 -слоя, которое называется лантаноидным сжатием (контракцией). Это явление заключается в том, что наличие завершенного 4/14-уровня способствует уменьшению объема атома за счет взаимодействия оболочки с ядром вследствие последовательного возрастания его заряда. Поэтому, наприм(ф, с увеличением атомного номера в ряду лантаноидов происходит неуклонное уменьшение размеров атома. Это же явление объяенж т целый ряд особенностей, характерных для d- и sp-элементов VI периода, следующих за лантаноидами. Так, лантаноидная контракция обусловливает близость атомных радиусов и ионизационных потенциалов, а следовательно, и химических свойств -элементов V и VI периодов (Zr—Hf, Nb—Та, Мо—W и т. д.). Особенно ярко это выражено у элементов-близнецов циркония и гафния, поскольку гафний следует непосредственно за лантаноидами и лантаноидное сжатие компенсирует увеличение атомного радиуса, вызванное появлением дополнительного электронного слоя. Эффект лантаноидной контракции простирается чрезвычайно далеко, оказывая влияние и на свойства sp-элементов VI периода. В частности, для последних характерна особая устойчивость низших степеней окисления Т1+ , РЬ , Bi+з, хотя эти элементы принадлежат, соответственно, к III, IV и V группам. Это объясняется наличием так называемой инертной б52-эле- ктронной пары, не участвующей в образовании связей группировки электронов, устойчивость которой опять-таки обусловлена лантаноидной контракцией. У таллия, свинца и висмута участвуют в образовании связи лишь внешние бр-электроны (Tl[6s 6p ], Pb[6s 6p2], Bi[6s 6p ]). Аналогичное явление актиноидной контракции , по-видимому, также должно наблюдаться, хотя и в меньшей степени. Однако проследить это влияние пока невозможно вследствие малой стабильности трансурановых элементов и незавершенности VII периода. Таким образом, положение металла в Периодической системе и особенности структуры валентной электронной оболочки играют определяющую роль в интерпретации химических и металлохимических свойств элементов. [c.369]

    Если число атомов в молекуле всегда целочисленное, то и состав молекулярных кристаллов должен выражаться химическими формулами с целочисленными индексами. Иное наблюдается при образовании твердых веществ с координационными решетками. В этих случаях при огромном количестве взаимодействующих атомов А может оказаться другое число атомов В. Отсюда возникает нецелочисленность стехиометрических индексов в формулах таких веществ. Это легко выполняется, если характер связи в решетке близок к ковалентному или металлическому. В типично ионных решетках отклонение от целочисленного значения индексов затрудняется необходимостью полной компенсации зарядов ионов противоположных знаков. Это значит, что если в твердом состоянии соединение не имеет молекулярной структуры, то в зависимости от строения атомов, строения возникающей фазы и характера связи атомов в ней состав соединения и его свойства могут сильно зависеть от путей синтеза, т. е. могут образовываться соединения переменного состава в пределах гомогенности фазы. Такими оказались многие ранее считавшиеся постоянными соединения фосфиды, арсениды, селениды, сульфиды, оксиды, галиды и др. В случае веществ с координационными решетками следует пользоваться термином формульный вес вместо молекулярный вес, так как молекул в таких соединениях нет. [c.137]

    При адсорбции из растворов электролитов наряду с поглощением нейтральных молекул наблюдается и адсорбция ионов, находящихся в растворе, например краситель метиленовый синий, основной по своим химическим свойствам, у которого положительно заряженный ион адсорбируется преимущественно на электроотрицательных (кислотного характера) адсорбентах, в частности на силикагеле, а отрицательный ион — ион хлора — остается в растворе. Для компенсации заряда этого аниона из силикагеля переходит в раствор ион натрия, всегда содержащийся в небольшом количестве в силикагеле. Такая избирательная адсорбция одинаковых ионов растворов электролита, сопровождающаяся одновременно вытеснением соответствующего иона из адсорбента, называется обменной, полярной или ионообменной. При обменной адсорбции происходит обмен ионами в эквивалентных количествах, благодаря чему элек-тронейтральность растворов остается ненарушенной. По этой жё причине электронейтральность остается ненарушенной и на поверхности адсорбента. Обменная адсорбция протекает более медленно, чем обычная. [c.139]

    Если число атомов в молекуле всегда целочисленное, то и состав молекулярных кристаллов должен выражаться химическими формулами с целочисленными индексами. Иное наблюдается при образовании твердых веществ с координационными решетками. В этих случаях при огромном количестве взаимодействующих атомов А может оказаться другое число атомов В. Отсюда возникает нецелочисленност], стехиометрических индексов в формулах таких веидеств. Это легко выполняется, если характер связи в решетке близок к ковалентному или металлическому. В типично ионных решетках отклонение от целочисленного значения индексов затрудняется необходимостью полной компенсации зарядов ионов противо-полояшых знаков. Это значит, что если в твердом состоянии соединение не имеет. молекулярной структуры, то в зависимости от строения атомов, строения возникающей фазы и характера связи атомов в ией состав соединения и его свойства могут сильно зависеть от путей синтеза, [c.169]

    Одна из особенностей двуокиси марганца заключается в том,, что часть атомов кислорода в кристаллической решетке может быть замещена гидроксильными группами 0Н , а в плоскостях между кристаллами могут находиться посторонние ионы металлов. Все эти отклонения от идеального состава МпОа возможны лищь при сохранении общей нейтральности зарядов в кристалле. По этим причинам физико-химические свойства — электропроводность, ионный обмен в контакте с электролитом — различны для разных двуокисей марганца. [c.55]

    Химические свойства. М. обладают низкими значениями первого потенциала ионизации и сродства к электрону. Вследствие этого в хим. р-циях они выступают как доноры электронов (восстановители), а в соед. и их р-рах образуют положительно заряженные ионы (в большинстве случаев аквакатионы). Электроотрицательности атомов М. ниже электроотрицательностей атомов неметаллов. М. могут входить в состав сложных анионов, напр. МПО4, или ацидокомплексов, напр. [Ре(СМ)б] , однако в них атомы М. всегда являются центрами положит, заряда. Только для нек-рых М., находящихся на грашще с неметаллами, таких, как 8п, Ро, 8Ь и т. п., известны соед., напр, гидриды, в к-рых М. имеют формально отрицат. степень окисления. Но во всех этих соед. хим. связь ковалентная. [c.53]

    Учитывая, что пока система СИ еще не получила повсеместного распространения, а также чтобы иметь возможность разбираться в старой литературе, следует знать старые единицы иначе невозможно иметь дело с некоторыми широко распространенными константами и результатами измерений. Например, далее в тексте этой книги мы встретимся с постоянной Планка, выраженной как 6,625-10 эрг-с, хотя правильнее было бы представить ее как 6,625 10 Дж-с. Поверхностное натяжение воды приблизительно равно 72 эрг-смно правильнее выразить его как 7,2-10 Дж-см . Радиус иона калия равен 1,33 А, или, правильнее, 0,133 нм. Ионный потенциал важное понятие, которое вводится для обсуждения химических свойств многих элементов, обычно определяется как отношение заряда иона к его радиусу, выраженному в ангстремах. Выраженные в таких величинах ионные радиусы различных элементов представляют собой небольшие, удобные для сравнения числа. Очевидно, в системе СИ ионные потенциалы должны выражаться через метры или нанометры, но в химической литературе их значения традиционно приводятся выраженными через ангстремы. Один ангстрем равен 10 см или 10 °м, эта единица получила широкое распространение, потому что радиусы большинства атомов имеют величину порядка 10- см. [c.26]

    Описательная химия элементов охватывает изучение их поведения в атомарном, ионном и молекулярном состояниях при различных температурах и давлениях, а также в различном окружении. Данный раздел химии может излагаться и изучаться различными способами. В этой главе и в нескольких последующих мы сконцентрируем внимание на периодических закономерностях для сходных типов частиц, и особенно на их химических свойствах. В качестве таких однотипных частиц в первую очередь рассматриваются простые (одноатомные) анионы неметаллических элементов. Установлено, что все эти сферические отрицательно заряженные частицы имеют много общих химических и физических свойств. Все одноатомные анионы обладают симметричным строением электронных оболочек, которое подобно строению атомов благородных газов, и это свойство в решающей степени обусловливает общность их химического поведения. Впрочем, поскольку анибны различных элементов отличаются друг от друга по таким важным параметрам, как ионный радиус и ионный заряд, у них обнаруживаются и некоторые химические различия. Всестороннее обсуждение этих ионов мы начнем с их общих свойств, после чего перейдем к различиям между ними и постараемся показать, как все это связано со сходством и различиями в строении самих частиц. [c.323]


Смотреть страницы где упоминается термин Заряд иона и химические свойства: [c.61]    [c.164]    [c.182]    [c.193]    [c.181]    [c.105]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.466 ]




ПОИСК





Смотрите так же термины и статьи:

Ионов заряды

Химическая ионная



© 2025 chem21.info Реклама на сайте