Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кальций электронное строение

    Для осаждения анионов применяют соли кальция, стронция, бария, серебра, цинка, кадмия, ртути, реже свинца (II), никеля (И). Здесь ясно видна связь осаждаемости анионов со строением внешних электронных слоев осаждающих катионов, как и в случае сероводородного метода. [c.44]

    Естественно, закономерности в свойствах различных веществ или в параметрах различных реакций должны быть более простыми, если при сопоставлении ограничиться веществами, близкими между собой по химическому составу и строению. Условимся называть однотипными соединения, обладающие аналогичной формулой и различающиеся только одним элементом, причем эти элементы должны быть аналогами (т. е. принадлежать к одной подгруппе периодической системы) и находиться в одинаковом валентном состоянин. Однотипными можно считать, например, карбонаты щелочно-земельных металлов. Можно пользоваться понятием о различной степени однотипности. Так, карбонаты кальция, стронция и бария являются более однотипными между собой, а карбонаты магния и тем более бериллия менее подобны им по термодинамическим свойствам, в соответствии с большим отличием строения электронной оболочки их катионов. [c.291]


    Изобразите электронные схемы строения атомов натрия, хлора, хрома, кальция и железа. [c.44]

Рис. 86а. Электронное строение атомов от водорода (Н) до кальция (Са). Атомы расположены в порядке увеличения заряда ядер. Рис. 86а. Электронное строение атомов от водорода (Н) до кальция (Са). Атомы расположены в порядке увеличения заряда ядер.
    Причина такой последовательности заполнения электронных энергетических подуровней заключается в следующем. Как уже указывалось, энергия электрона в многоэлектронном атоме определяется значениями не только главного, но и орбитального квантового числа. Так же была указана последовательность расположения энергетических подуровней, отвечающая возрастанию энергии электрона (табл. 2.3). Как показывает табл. 2.3, подуровень 4з характеризуется более низкой энергией, чем подуровень 3 , что связано с более сильным экранированием -электронов в сравнении с з-электронами. В соответствии с этим размещение внешних электронов в атомах калия и кальция на 4в-подуровне соответствует наиболее устойчивому состоянию этих атомов. Электронное строение атомов калия и кальция соответствует правилу Клечковского. Действительно, для З -орбиталей (п = 3, / = 2) сумма (п + I) равна 5, а для 45-орбитали (п = 4, / = 0) — равна 4. Следовательно, 4з-подуровень должен заполняться раньше, чем подуровень 3 , что в действительности и происходит. [c.67]

    Сейчас построим электронные конфигурации атомов от натрия до кальция включительно. Заметим, что в каждом случае расположение внутренних электронов совпадает с конфигурацией неона, поэтому для краткости будем обозначать его как (Ке). Тогда получаем натрий, (Ые)35 магний, (Ке)35 алюминий, (Ые)35 3р ,. .. и так вплоть до аргона, (Ме)35 3р . Внутренние электроны калия и кальция расположены так же, как в аргоне, и их конфигурации имеют вид (Аг)45 и (Аг)45 соответственно. Теперь ясно просматривается связь между химическим сходством различных элементов, прекрасно выраженным Менделеевым в Периодической системе, и сходством их электронного строения. В частности, можно заметить, что щелочные металлы имеют один неспаренный электрон на внешней 5-орбитали, а щелочноземельные металлы — два электрона на внешней 5-орбитали. В то же время для благородных газов характерно полное заполнение орбиталей 5- и р-типа. [c.54]

    Сходство элементов в диагональном направлении обусловлено близостью внешних оболочек ионов и близостью атомных радиусов в соответственных состояниях (натрий—кальций, магний-скандий, алюминий—титан, титан—ниобий, ванадий—молибден, молибден-рений, родий—платина и др.). Несходство же таких соседей в диагональном направлении, как, например, Mg и В, Al и С, Si и N, Zr и V, Nb и Сг, Мо и Мп, обусловлено сильным различием электронного строения и размеров оболочек ионов в высших валентных состояниях. [c.159]

    Продолжим рассмотрение электронного строения атомов. Мы остановились на атоме аргона, у которого целиком заполнены 3 -и Зр-подуровни, но остаются незанятыми все орбитали Зй-под-уровня. Однако у следующих за аргоном элементов — калия (7 = 19) и кальция (2 = 20)—заполнение третьего электронного слоя временно прекращается и начинает формироваться -подуровень четвертого слоя электронное строение атома калия выражается формулой 15 25 2р 3 2 3р 45, атома кальция— 152 25 2р 3 2 3р 452 и следующими схемами  [c.89]


    Продолжим рассмотрение электронного строения атомов. Мы остановились на атоме аргона, у которого целиком заполнены о5- и Зр-подуровни, но остаются незанятыми все орбитали Зй-под-уровня. Одиако у следующих за аргоном элементов — калия (2=19) и кальция (2 = 20) — заполнение третьего электронного слоя временно прекращается и начинает формироваться -подуровень четвертого слоя электронное строение атома ка- [c.88]

    В молекуле фтора этих дополнительных связей нет (фтор не имеет ( -орбиталей) и поэтому его молекула менее прочна. Сродство к электрону у фтора несколько меньше, чем у хлора, но больше, чем у брома, и составляет 350 кДж/моль атомов. Стандартный окислительно-восстановительный потенциал фтора очень высок ( + 2,85 В) фтор — сильнейший окислитель, способный оттягивать электроны даже от атома кислорода. Ион фтора по размерам почти точно равен иону кислорода О -, поэтому оба иона образуют соединения, похожие друг на друга. Между фторидами ионного тина, например фторидом натрия, и оксидами, например оксидом кальция, наблюдается сходство в строении кристаллической решетки. По ряду свойств фториды металлов резко отличаются от хлоридов и бромидов. Так, фторид серебра растворим в воде, в то время как его хлориды и бромиды почти нерастворимы. [c.194]

    Но такое заполнение происходит до определенного момента. Если рассмотреть изменение энергии подуровней с увеличением заряда ядра атома (см. рис. 8), то можно увидеть, что энергия всех подуровней снижается. Но скорость понижения энергии у разных подуровней не одинакова. Поэтому, если до кальция Зй -подуровень был по энергии выше 4 , то начиная со скандия и последующих элементов, его энергия резко снижается, о чем говорит, например, электронное строение иона Ре"" (15"25"2/ 3 "3/ 3(/). Из приведенного электронного строения иона видно, что два валентных электрона железа ушли с менее энергетически выгодного 4 -подуровня. Аналогичная инверсия энергий наблюдается у 5 -и 4/-, а также у 6 - и 5/-подуровней. [c.36]

    Электронное строение атомов калия и кальция соответствует этому правилу. Действительно, для З -орбиталей (л = 3, / = 2) р мма (/г + 1) равна 5, а для 45-орбитали (п == 4, / = 0)— равна [c.93]

    Электронное строение атомов калия и кальция соответствует этому правилу. Действительно, для З -орбиталей (п = 3, 1 — 2) сумма [п- -1) равна 5, а для 45-орбитали (п = 4, / = 0)—равна 4. Следовательно, 45-подуровень должен заполняться раньше, чем подуровень Зй, что в действительности и происходит. [c.89]

Рис. 23. Электронное строение атомов от водорода до кальция. Рис. 23. Электронное строение атомов от водорода до кальция.
    Растворимость магния в расплавленных солях изучена А. И. Журиным [15]. Растворимость магния при 900° равна 1,2 10 -% (мол.), т. е. во много раз ниже растворимости Са, 5г, Ва и Сё в своих хлоридах, что объясняется различным электронным строением этих металлов. Попытки получить субсоединения магния, подобно тому, как был получен субхлорид кальция, не дали положительных результатов. Микроскопические исследования застывших расплавов показали только наличие в соли тонкодисперсного магния. [c.254]

    Используя представления о кайносимметрии, можно выделить более тонкий вид электронной аналогии, так называемую слоевую аналогию (в дополнение к групповой и типовой аналогии). Слоевыми аналогами называют элементы, которые являются типовыми аналогами, но не имеют внешних или предвнешних кайносимметричных электронов. К таким аналогам относятся, например, в IA-группе К, Rb, s и Fr, а Li и Na не являются слоевыми аналогами с остальными щелочными металлами, поскольку у Li присутствует внешняя кайносимметричная 2р-оболочка (вакантная), а у Na кайносимметрнчная заполненная 2р-оболочка является предвнеш-ней. В ПА-группе слоевыми аналогами являются щелочно-земельные металлы (подгруппа кальция), а в П1А-группе — элементы подгруппы галлия и т. д. С точки зрения электронного строения слоевые аналоги являются между собой полными электронными аналогами. Поэтому рассматривать химические свойства элементов группы мы будет в такой последовательности первый типический элемент, второй типический элемент, остальные элементы главной подгруппы, элементы побочной подгруппы. Например, в И1 группе отдельно рассматриваются бор, алюминий, подгруппа галлия, подгруппа скандия в V группе — азот, фосфор, подгруппа мышьяка, подгруппа ванадия п т. п. [c.15]

    Исходя из электронного строения щелочноземельных металлов, можно наметить более полную картину фазовых переходов при высоких давлениях. Кальций, стронций и барий в металлическом состоянии двухкратно ионизированы, поэтому имеют ионы с внешней ортогональной р -оболочкой. Перекрытие и обменное взаимодействие р-орбиталей приводят к образованию их ОЦК модификаций. Плавление происходит без изменения концентрации свободных электронов (2 эл/атом) и строения внешних р -оболочек ионов, поэтому жидкость Ж1 сохраняет ОЦК ближний порядок (К 8), и повышение давления, препятствуя образованию вакансий, занимающих объем AF, сначала ведет к повышению температуры плавления. Затем направленные р-орбитальные связи разрушаются, и в жидком состоянии происходит переход к статистически неупорядоченной, но более плотной упаковке ЖП1 (К 12) через промежуточную область ЖП со средним значением координационного числа. Это отвечает переходу кривой плавления через максимум и вслед за ним понижению [c.262]

    Одинаково ли строение электронных оболочек а) у ионов хлора и ионов кальция в кристаллах хлористого кальция б) у ионов брома и ионов натрия в кристаллах бромистого натрия . [c.178]

    С атомом какого инертного газа и с ионом какого галогена сходна по электронному строению частица, возникшая в результате удаления из атома кальция вале11тных электронов  [c.118]

    IV период начинается калием (2=19), электронное строение которого выражается формулой 15 25 2р 35 3рЧ51. Его 19-й электрон занял 45-подуровень, энергия которого ниже энергии З -подуровня (см. рис. 2.3). Внешний 45-электрон придает элементу свойства, сходные со свойствами натрия. У кальция (2==20) 45-подуровень заполнен двумя электронами ]5 25 2р 3523рЧ5 С элемента скандия (2=21) начинается заполнение 3 -подуровня, так как он энергетически более выгоден, чем 4р-подуровень (см. рис. 2.3). Пять орбиталей З -под-уровня могут быть заняты десятью электронами, что осуществляется у атомов от скандия до цинка (2=30). Поэтому электронное строение 8с соответствует формуле 15 25 2р 35 3р 3 45 , а цинка — ls 2s22p 35 3p 3ii 4s . В атомах последующих элементов вплоть до инертного газа криптона (2=36) идет заполнение 4р-подуровня. В IV периоде 18 элементов. [c.51]

    Типичный химический подход включает следующие стадии 1) проведение предварительных качественных проб для определения общего состава испытуемого вещества 2) разделение испытуемого вещества на совокупности составляющих — в таких совокупностях каждая составляющая может быть определена в присутствии всех остальных составляющих данной совокупности 3) качественный анализ на такие составляющие 4) учет любых превращений, которые могут произойти при разделении и анализе, как, например, превращение углеводородных соединений в НгО и СОг или сульфида в сульфат 5) расчет состава исходного исследуемого вещества. В наиболее благоприятных случаях анализ позволяет перечислить чистые вещества, действительно содержащиеся в испытуемом в остальных случаях сообщается лишь процентный состав каждого из обнаруженных элементов (т. е. процентный состав ядер с различными 2). Следует постоянно иметь в виду, что в результате анализов указываются обнаруженные в составе исследуемого вещества элементы, несмотря на то что их атомы находятся в веществе вовсе не в элементарном состоянии. Например, говорят, что вода состоит по весу из 88,8% кислорода и 11,19% водорода, или по атомному составу из 33,33% кислорода и 66,67% водорода, хотя в ней вообще нет атомов кислорода и водорода в элементарном состоянии. Карбонат кальция, согласно данным анализа, состоит по весу из 40% кальция, 12% водорода и 48% кислорода, а по атомному составу из 20% кальция, 20% углерода и 60% кислорода, хотя в нем на самом деле не существует элементарного кальция, углерода и кислорода. Анализ на элементы еше не дает нам сведений о состоянии, в котором находятся атомы. Он указывает только процентный состав ядер каждого порядкового номера, но не описывает электронное строение вещества вблизи каждого ядра. Определение электронного строения вещества требует большего, чем одни только данные по элелментному составу. [c.168]


    Жизненно необходимыми элементами ИА-группы являются кальций и магний. Близость физико-химических свойств Са, 5г и Ва, обусловленная сходством электронного строения, проявляется и в биологическом действии этих ионов (взаимозамещаемости). Вместе с тем различия в электронном строении -элементов ИА-группы, проявляющиеся прежде всего в способности к комплексообразованию, обусловливают индивидуальность биологического действия их ионов, в частности токсичность бериллиевых и бариевых солей. [c.253]

    Получение и свойства. Строение кристаллических решеток. Получают эти металлы обычно электролизом расплавленных хлоридов, магний — также восстановлением оксида MgO углем в электрических печах и другими способами. Барий чаще всего получают алюминотермическим способом. Бериллий, магний и при высокой температуре кальций образуют кристаллы с гексагональной плотной упаковкой, а стронций и при низкой температуре кальций имеют кубическую гранецентрированную решетку. Для бария характерна объемноцентриро-ванная упаковка. Это различие решеток играет некоторую роль в нарушении закономерности различий плотности, температур плавления и других физических свойств. Атомы их, кроме бериллия, теряют два электрона, превращаясь в ионыЭ . Но их восстановительная способность слабее, чем у щелочных металлов. [c.275]


Смотреть страницы где упоминается термин Кальций электронное строение: [c.67]    [c.29]    [c.56]    [c.51]    [c.289]    [c.42]    [c.42]    [c.41]    [c.62]    [c.105]    [c.112]    [c.182]    [c.143]    [c.193]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.89 , c.227 , c.233 ]




ПОИСК





Смотрите так же термины и статьи:

Кальций строение

Электронное строение

электронами электронное строение



© 2025 chem21.info Реклама на сайте