Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Осмий радиус

    Согласно этой теории, катализ происходит только при структурном и энергетическом соответствии катализируемых молекул данному катализатору. Теорией Баландина было предсказано, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. При этих условиях шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей М— — С — С, валентный угол которых близок тетраэдрическому углу. Данным условиям удовлетворяют палладий, платина, иридий, родий, осмий и все они являются активными катализаторами гидрирования бензола и дегидрирования циклогексана. В то же время металлы, обладающие объемноцентрированной структурой, например тантал, вольфрам, даже при почти таких же размерах их атомных радиусов, как у платиновых металлов, а также металлы, имеющие такую же кристаллическую структуру, как платина, но иные размеры атомных радиусов, в частности серебро, золото, или не относящиеся к переходным элементам — медь, цинк,—все эти металлы не проявляют каталитической активности в вышеуказанных реакциях. Таким образом, структура поверхностных соединений бензола и циклогексана с платиновыми металлами была описана и доказана. Мало того, было, в сущности, установлено, что в условиях катализа подобные соединения легко и притом в точности воспроизводятся. Иначе катализ был бы невозможен. [c.59]


    Радиусы атомов ниобия и тантала, а также радиусы их ионов (Э ") очень близки из-за лантаноидного сжатия. Это объясняет большое сходство их физико-химических свойств. В свободном состоянии ванадий, ниобий и тантал весьма стойки к химическим воздействиям и обладают высокими температурами плавления. Эти металлы вместе с хромом, молибденом, вольфрамом, рением, а также рутением, родием, осмием и иридием (см. ниже) относятся к тугоплавким металлам. Тугоплавкими условно считают те металлы, температура плавления которых выше, чем хрома (1890°С). Тугоплавкие металлы и их сплавы играют большую роль в современной технике. [c.286]

    Рассчитанный радиус 08 + составляет очень малую величину 0,54 А. Такого размера частица зарядом +8 создавала бы сильное поляризующее действие, что делало бы невозможным существование ионной связи. Действительно, все соединения осмия имеют ковалентные свойства металл осмий известен как один из самых тугоплавких и плотных (прочная связь металл—металл, большое число связей), а соединения его, как правило, имеют молекулярную структуру и обладают высокой летучестью, что характерно, как мы знаем, главным образом для ковалентных соединений. (Склонность осмия давать летучие соединения нашла свое отражение в названии этого элемента осмий по-гречески означает пахнущий.) [c.152]

    Различна плотность металлов. Она тем меньше, чем меньше атомная масса элемента-металла и чем больше радиус его атома. Самый легкий из металлов — литий (пл. 0,53 г/см ), самый тяжелый — осмий (пл. 22,6 г/см ). Как уже отмечалось, металлы с плотностью меньше 5 г/см называются легкими, остальные — тяжелыми. [c.152]

    В побочных подгруппах гораздо сильнее, чем в главных, проявляется сходство между рядом стоящими элементами. Например, железо ближе по свойствам к марганцу и кобальту, чем к рутению и осмию, которые стоят с ним в одной подгруппе. Сходство по горизонтали (гл. Н, 5) особенно велико в триадах (железо, кобальт, никель рутений, родий, палладий осмий, иридий, платина), в семействах лантаноидов и актиноидов — вследствие того, что в атомах всех этих элементов достраиваются внутренние подуровни (п—1) и (п—2)/. При достройке упомянутых подуровней атомные радиусы почти не изменяются, а у лантаноидов даже уменьшаются (гл. II, 5). [c.323]

    Плотность металла тем меньше, чем меньше его атомный вес и чем больше радиус атома (почему ). Она у металлов изменяется в очень широких пределах — от 0,5 у лития до 22 у осмия. Металлы с плотностью ниже 5 называются легкими металлами. Из конструкционных металлов к легким относятся магний, алюминий и титан они используются, главным образом, в строительстве транспорта, титан — в самолетах, летающих со сверхзвуковыми скоростями. Трение о воздух при таких скоростях вызывает сильное разогревание обшивки самолета, а прочность металлов при нагреве сильно снижается, прежде чем станет равной нулю, когда металл расплавится. [c.123]

    Атомные и ионные радиусы рения близки к радиусам молибдена, вольфрама, осмия, иридия и других платиновых металлов. Атомные радиусы (в А) имеют следующие значения Ке 1,37, Мо 1,36, W 1,37, Оз 1,34, 1г 1,35, Мп 1,29, Тс 1,30 [149]. Эти элементы представляют особенный интерес для геохимии рения [208]. [c.9]

    В заключение этого раздела необходимо отметить, что поры тела мы считаем капиллярными, если поверхность жидкости в них принимает форму, обусловленную силами поверхностного натяжения и мало искаженную силами тяжести. Если влажное пористое тело имеет размеры около Осм, то поры, радиус которых меньше 10 см, можно считать капиллярами (влиянием силы тяжести в таких порах можно пренебречь с точностью примерно до 6%). Все поры, большие 10 см, не являются капиллярными, и поведение жидкости в таких порах необходимо рассматривать с учетом влияния силы тяжести [Л. 38]. Жидкость, находящаяся в таких порах, еще менее прочно удерживается лиофильной поверхностью. [c.22]


    Элементарный технеций представляет собой серебристо-серый металл, который, подобно рению, рутению и осмию, кристаллизуется в гексагональной системе с плотной упаковкой. Элементарная ячейка технеция состоит из двух атомов с радиусом 1,358 А [254]. Его кристаллическая структура не претерпевает изменений при давлении до 60 ООО кГ/см [90]. [c.18]

    А получается 1,29А для октаэдрического радиуса шеста-валентного осмия. Оба эти значения отличаются от радиуса [c.183]

    Структура атомов элементов, включающих 32-электронный слой з-, р , й , / ), который сформировался у лантаноидов (л=4, 7= ==58—71),— лантаноидное сжатие (уменьшение радиуса атомов) — от лантаноидов распространяется на последующие элементы, что сказывается на свойствах элементов с 2>71 (начиная с НГ). Например, плотность металлов от НГ до Аи — Hg примерно вдвое больше плотности -металлов пятого периода (2>39, начиная с 2г). Это закономерно, так как атомные массы -металлов, расположенных после лантаноидов, приблизительно вдвое больше атомных масс их аналогов в пятом периоде, а атомные радиусы (у 2г 0,160 нм, у НГ 0,159 нм и т. д.), и, следовательно, атомные объемы близки. Максимальную плотность имеет осмий (22,5 г/см . Химические свойства -элементов пятого и шестого периодов сходны. Так, 2г по свойствам ближе к Н5, чем к Т1 МЬ ближе к Та, чем к V Мо — к Ш, чемкСг Тс—к Ке, чем к Мп Ru— кОз, чем к Ре НЬ — к 1г, чем к Со Рс1 — к Р1, чем к N1 Ag — к Аи, чем к Си С(1 — к Hg, чем к 2п, [c.89]

    Большое значение имеют исследования структуры поверхности катализаторов. Согласно теории А. А. Баландина катализ происходит только при структурном и энергетическом соответствии реагирующих молекул данному катализатору (1929 г.). А. А. Баландин предсказал, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. Шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей, валентный угол которых близок к тетраэдрическому углу. Этими условиями обладают п-алладий, платина, иридий, родий, осмий. Предсказание А. А. Баландина полностью подтвердилось. Другие металлы, имеющие такой же атомный радиус, но иную структуру или такую же структуру, но другой атомный радиус, не проявили каталитической активности в упомянутых реакциях. [c.54]

    Данные экоперимента показывают, что действие рутения, осмия, родия, иридия и рения в ряду варьируемых компонентов специфично. Оно связано с электронным строением атомов и различием в таких важных характеристиках для сг- элементов, как валентные состояния, атомные радиусы, потенциалы ионизации, сродство к электрону, электроотрицательности, энергии атомизации (см. табл.). Это отражается на распределении электронной плотности между атомами образующихся структур, их опин-валентной насыщенности, а следовательно, и активности. Так, в случае (Р<1+Еи)-, (РсЦ-Оз)- и (Р(1 + 1г)-катали-заторов (рис. 5, 6) при гидрировании имеет место значительное расхождение аддитивной и наблюдаемой активностей. Интересно, что в этих условиях (Ки)т— (Ой) г-Структуры неактивны, а (1г)т — малоактивны. Особенно заметен рост активности для палладий-рутениевых, лалладий-осмиевых и палладий-иридиевых катализаторов в интервале [c.65]

    Атомные характеристики. Атомный номер 76, атомная масса 190,2 а. е.м., атомный объем 8,49-10 ° м /моль, атомный радиус 0,136 нм, ионный радиус Os + 0,065 нм. Конфигурация внешних электронных оболочек Потенциалы ионизации 1 (эВ) 8,7 17 25 электроотрицательиость 1,52. Имеет г. п. у. решетку с периодами а=0,275 и с = 0,432 нм. Энергия кристаллической решетки реш = 730 мкДж/кмоль. Известно 7 устойчивых изотопов осмия с массовыми числами 184 (распространенность в природе 0,018%), 186 (1,59 %), 187 (1,64 %), 188 (13,3%), 189 (16,1 %), 190 (26,4 %), 191 (41,0 %). Также известны радиоактивные изотопы осмия с массовыми числами от 183 до 194 и периодами полураспада от 12 ч до 700 сут. Эффективное поперечное сечение захвата тепловых нейтронов составляет (15,3 0,7) 10 м среднее сечение рассеяния, полученное экспериментально для максвелловского спектра нейтронов, равно (11,1 1) - м . Работа выхода электрона Ф = 4,7 эВ, сродство к электрону 1,4 эВ. [c.510]

    Свойства простых веществ и соединений. Из-за того что в триадах семейства платиновых металлов радиусы атомов несколько воярастают (в каждой слева направо), плотность упаковки их кристаллической решетки падает. Соответственно довольно быстро от рутения к палладию и от осмия к платине уменьшаются температуры плавления. Рутений и осмий характеризуются высокой твердостью и хрупкостью. Поэтому их легко превращать в порошок простым растиранием. Наоборот, палладий и платина характери-вуются высокой вязкостью и легко превращаются в тонкую проволоку и фольгу. [c.375]

    Важное значение электронного строения центрального иона вытекает из сопоставлений кислотных- свойств комплексов [Р1 Епд] и [05 Епз1 +. Для платинового комплекса =7,1-10" , /Сг = 9,2-10" . Осмиевый комплекс по первой ступени диссоциирует как сильная кислота, а его Кг — 1,6-10" . Следует отметить, что радиусы платины (IV) и осмия (IV) близки, а заряды центральных ионов и комплексных ионов одинаковы. [c.261]

    НЫЙ октафторид образуется осмием высшим фторидом рутения является RuFg, несмотря на то, что атомный радиус рутения лишь [c.572]

    Нужно отметить, что кривые изменения атомных радиусов не только подтверждают правомерность сдвига легких элементов первых двух периодов в таблице Менделеева, но и отражают также некоторое смещение ряда натрий—аргон влево по отношению к своим более легким аналогам, вследствие чего эти элементы представляют начало ответвления в канедой группе -переходных металлов. Эти смещения особенно велики для металлических радиусов натрия, магния и алюминия. Вполне определенно выявляются сдвиги вправо по отношению к более тяжелым аналогам всего ряда металлов 4-го периода, от калия до цинка, причем этот сдвиг распространяется и дальше на элементы главных подгрупп 4-го периода от галлия к криптону. Совершенно определенно все редкоземельные металлы иттриевого ряда сдвинуты вправо по отношению к металлам цериевого ряда. Атомный радиус актиния (III группа) лежит на продолжении ветви иттрий—лантан, а атомные радиусы актиноидов (тория—плутония) лежат на продолжении ветвей лантаноидов, приближаясь к атомным радиусам соответствующих тяжелых переходных металлов (гафнпя— осмия). [c.126]

    Во всех трех больших периодах при переходе от металла I группы (калия, рубидия и цезия) к металлам VI группы (хрому, молибдену и вольфраму) наблюдается сильное уменьшение межатомных расстояний и диаметров атомов, соответствующее предлагаемой гипотезе о полном отделении всех валентных электронов и обнажении р -оболочек ионов. Чем больше избыточный заряд таких ионов с одинаковыми электронными конфигурациями, тем, естественно, сильнее притяжение р-электронов к ядру и тем меньше диаметр этих ионов и короче расстояния между ними. Этому сокращению расстояний способствует и повышение электронной концентрации. Атомные диаметрых-мар-ганца (плотная кубическая модификация) и б-марганца (объемноцентрированная кубическая модификация) резко увеличены по сравнению с соответствующим диаметром атомов хрома и железа, что вновь указывает на пониженную степень ионизации атомов марганца (1- -). Железо, кобальт и никель имеют меньшие атомные диаметры вследствие того, что они двухкратно ионизированы. От железа к никелю межатомные расстояния уменьшаются в связи с сокращением размеров внешней электронной оболочки. Уменьшение межатомного расстояния продолжается в VII и VIII группах в связи с переходом от объемноцентрированной к плотнейшим упаковкам и достигает минимума у рутения и осмия. Межатомные расстояния от рутения к палладию и от осмия к платине слегка увеличиваются вследствие уменьшения электронной концентрации от 4 до 2 элЫтом и соответствующего понижения энергии межатомной связи. Далее к побочным металлам второй группы (цинку, кадмию и ртути) межатомные расстояния и атомные диаметры продолжают возрастать в связи с уменьшением концентрации свободных электронов. Атомные радиусы [c.233]


    Изменение атомных радиусов и межатомных расстояний при 20° закономерно связано с изменением характеристик механической жесткости и прочности металлов при той же температуре. При высоких температурах вследствие разных коэффициентов расширения максимумы жаропрочности перемеш аются на хром, молибден и вольфрам, которые обладают максимальными температурами плавления. Механическая жесткость металлических решеток может быть характеризована упругими модулями. Модули нормальной упругости Е, модули сдвига 6 и объемные модули К металлов больших периодов при 25° представлены на рис. 104. С возрастанием числа валентных электронов от одного до шести, т. е. от ш елочных металлов к хрому, молибдену и вольфраму, упругие модули сильно увеличиваются, причем переход от IV к V группе приводит к сравнительно небольшому повышению модулей. В четвертом периоде они достигают максимального значения у хрома, сильно понижаются при переходе к марганцу, сохраняют почти постоянное значение у келеза, кобальта, никеля, а затем резко падают при переходе к меди и цинку. В пятом и шестом периодах упругие модули сильно возрастают от рубидия и цезия к молибдену, вольфраму и далее продолжают увеличиваться к рутению и осмию, а затем уже резко понижаются при переходе к палладию, платине и метал-.тгам I и II побочных групп. [c.234]

    Иридий можно осадить в виде гидратированной двуокиси, если довести pH раствора до 6, добавляя бикарбонат натрия к кипящему раствору, содержащему бромат При этом также осаждаются палладий и родий, платина (IV) не осаждается осмий и рутений должны быть удалены из раствора (путем отгонки четырехокисей) до проведения гидролитического осаждения. Затем выделяют палладий, осаждая его диметилглиоксимом, после чего из фильтрата осаждают родий с помощью хлорида титана (П1). При этом часть иридия соосаждается с металлическим родием, поэтому осадок нужно растворить в горячей серной кислоте и переосадить. Иридий таким образом остается в растворе вместе с титаном, который осаждают купферроном (необходимо переосаждение). Органические вещества в фильтрате разрушают с помощью серной и азотной кислот. Описанный в общих чертах ход анализа применяли лишь для выделения макроколичеств иридия не установлено, в какой степени он пригоден для выделения иридия, присутствующего в очень низких концентрациях. Добавленное в качестве коллектора небольшое количество железа (П1) должно способствовать осаждению гидратированной окиси иридия. Ионные радиусы железа (П1) и иридия (IV) очень близки (стр. 37) [c.466]


Смотреть страницы где упоминается термин Осмий радиус: [c.491]    [c.477]    [c.332]    [c.426]    [c.269]    [c.54]    [c.54]    [c.298]    [c.365]    [c.429]    [c.375]    [c.393]    [c.298]    [c.183]    [c.572]    [c.102]    [c.73]    [c.240]    [c.213]    [c.194]    [c.332]    [c.332]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.147 ]




ПОИСК





Смотрите так же термины и статьи:

Осмий

Осмий осмий



© 2025 chem21.info Реклама на сайте