Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рубидий радиусы

    Учитывая, что калий, являясь крупным катионом, должен давать прочное малодиссоциированное соединение с крупным анионом [7] кремнефтористоводородной кислоты, в 1959 году одним из нас было успещно выполнено концентрирование примеси 1 10 % кремния в плавиковой кислоте выпариванием 20 мл этой кислоты с добавкой 10 мг хлористого калия и 0,05 г угля. В остатке кремний определяли спектральным методом. В этих опытах практически полностью обнаруживали вводимые количества кремния. Затем в том же году были проведены [8] аналогичные сравнительные опыты определения микропримеси кремния в плавиковой кислоте с добавкой хлористого рубидия либо калия. Однако в этих опытах практических преимуществ замены калия рубидием (радиус иона которого больще, чем у калия) выявить не удалось [8]. [c.284]


    В главной подгруппе первой группы периодической системы находятся литий, натрий, калий, рубидий, цезий и франций В соответствии с номером группы в своих соединениях (в большинстве случаев ионных) они проявляют всегда степень окисления -Ы. Чисто ковалентное а—ст-связывание имеет место в газообразных молекулах Кза, Ка и т. д. Эти элементы — самые неблагородные . Их стандартные потенциалы порядка от —2,7 до —3,0 В (ср. табл. В.14). Ионные радиусы сопоставлены в табл. А.16. Обраш,ает на себя внимание тот факт, что при переходе от натрия к калию изменение радиусов оказывается, большим, чем в следующем за ними ряду элементов К—НЬ—Сз почему ). Это обстоятельство является главной причиной отличия свойств натрия от его более тяжелых аналогов. С учетом этого становится понятной аналогия в свойствах соответствующих соединений калия, рубидия и цезия. Особо следует под  [c.597]

    Анализ соотношения размеров пустот в структурных решетках кварца, тридимита и кристобалита, а также размеров радиусов примесных ионов показывает, что литий и натрий должны входить в решетку кварца, калий — в решетку тридимита, а рубидий и цезий — в решетку кристобалита. При внедрении их в неупорядоченную структурную сетку силикагеля образуется преимущественна та или иная модификация. Это, по-видимому, объясняется избирательным координирующим действием примесных ионов и незначительной деформацией решетки. [c.33]

    Рассчитать потенциальную энергию ионов лития, калия и рубидия в разбавленных водных растворах хлоридов при 25° С. Радиусы ионов принять по Полингу равными 0,060 0,133 и 0,148 нм соответственно. [c.17]

    Наиример, малораспространенный щелочной элемент рубидий сходен по своим характеристикам с ближайшим его аналогом — калием. Поэтому рубидий захватывается калийсодержащими минералами и является, следовательно, рассеянным элементом, собственных минералов почти не образует. Напротив, щелочной элемент цезий, столь же малораспространенный, как и рубидий, ие является рассеянным и, хотя он принадлежит к числу редких элементов, имеет собственные минералы, поскольку ионный радиус Сз+ настолько велик, что образование общих минералов с калием не оказывается возможным. [c.245]

    Ионный характер связей в гидроксидах и солях и способность ионов к гидратации обусловливают высокую степень диссоциации этих соединений в растворах и наличие ионов в твердых фазах. По мере перехода от лития к цезию (франций мало изучен) с ростом радиуса атома наблюдается увеличение числа молекул воды, гидратирующих ион в растворе, понижение энергии гидратации (как следствие убыли отношения заряд/радиус), понижение энергии образования кристаллических решеток солей, а также температур плавления металлов. Понижение ионизационного потенциала соответствует и росту химической активности по отношению к реакциям окисления в ряду литий — цезий. Цезий и рубидий воспламеняются на воздухе, тогда как литий на воздухе сравнительно устойчив. [c.151]

    Деструктурирующее действие вообще возрастает с радиусом иона так, что литий по сравнению с ионами рубидия и цезия оказывает меньшее влияние на структуру. Чем больше заряд иона, тем деструктурирующее действие выражено сильнее оно особенно значительно у алюминия. [c.253]

    Попытаемся оценить характер взаимодействия в неизученных системах бария с рубидием и цезием на основании металлохимических свойств компонентов (рис. 168). Для данных металлов характерно существенное различие в температурах плавления. Это могло бы свидетельствовать о тенденции к расслоению. С другой стороны, для компонентов отмечается значительная разность ОЭО, что определяет вероятность образования соединений. В то же время различие атомных радиусов (20%) исключает возможность возникновения широкой области гомогенности в твердом состоянии. Если же учесть близость ионизационных потенциалов компонентов, благоприятствующую взаимному обобществлению электронов, то из двух возможностей (расслоение — соединение) более вероятным представляется образование промежуточных фаз. Итак, в системах Ва—КЬ, Ва—Сз возможно образование весьма ограниченных твердых растворов на основе компонентов, а также металлических соединений. [c.376]


    С возрастанием порядкового номера щелочных металлов увеличиваются радиусы их атомов, внешний, или валентный, электрон все дальше отодвигается от ядра, заэкранированного внутренними электронами, и связь его с атомом все более ослабляется. Вследствие этого химическая активность щелочных металлов возрастает с возрастанием порядкового номера. Наименее химически активен из них литий (порядковый номер 3), наиболее активны рубидий и особенно цезий (по- [c.129]

    Ионный радиус рубидия 1,49А, цезия — 1.65А [5]. В соединениях оба элемента находятся в степени окисления 1+. [c.82]

    Из всех стабильных щелочных элементов рубидий и цезий имеют наибольшие атомные радиусы и, соответственно, наименьшие первые потенциалы ионизации. Это определяет их наиболее ярко выраженный электроположительный характер, высокую химическую активность и малую устойчивость к внешним воздействиям. В группе щелочных элементов они выделяются высокой поляризуемостью атомов и незначительной способностью оказывать поляризующее действие на другие атомы и ионы. Отсюда большая термическая устойчивость их солей по сравнению с соединениями других щелочных элементов и способность образовывать прочные соединения с комплексными анионами. [c.82]

    В геохимических процессах таллий преимущественно участвует в виде одновалентного. Его геохимия имеет двойственный характер. С одной стороны, он ведет себя как литофильный элемент, близкий к калию, рубидию и цезию, с другой стороны, — как халькофильный. Особенно близок таллий к рубидию, что объясняется практически одинаковыми ионными радиусами (1,49 А). [c.339]

    Попытаемся оценить характер взаимодействия в неизученных системах бария с рубидием и цезием на основании металлохимических свойств компонентов (рис. 108). Для данных металлов характерно существенное различие в температурах плавления. Это могло бы свидетельствовать о тенденции к расслоению. С другой стороны, для компонентов отмечается значительная разность ОЭО, что определяет вероятность образования соединений. В то же время различие атомных радиусов (20%) исключает возможность возникновения широкой области гомогенности в твердом состоянии. Если же учесть близость ионизационных потенциалов компонентов, благоприятствующую взаимному обобществлению электронов, то из [c.212]

    По кристаллической форме, мольному объему, цвету и другим свойствам соли аммония подобны солям калия и рубидия. Такое сходство объясняется тем, что размер иона аммония (радиус 148 пм) весьма близок к размерам ионов упомянутых щелочных металлов (радиус К+=133 пм, радиус КЬ+=148 пм). Все аммонийные соли растворимы в воде и полностью диссоциируют в водном растворе.  [c.197]

    Структура квасцов зависит от радиуса иона щелочного металла -структура является типичной для ионов средних размеров (калий, рубидий р-структурой обладают квасцы цезия и хромовые квасцы рубидия Структура обнаружена у квасцов натрия. При дегидратации а- и р-квасцов образуется гексагональная структура, в то время как -структура переходит в ромбическую [235, 271, 272]. [c.120]

    Из минеральных источников и морской воды рубидий и цезий переходят в соляные рассолы и отложения и поэтому содержатся в борнокислых фумаролах, поташе, селитре и особенно в залежах калийных минералов сильвина и карналлита [30, 40, 140]. При этом в верхних горизонтах калийных соляных месторождений, продуктах последних стадий усыхания морских бассейнов (карналлите, каините, сильвине, калиборите) рубидий концентрируется в большей степени, чем цезий, что определяется меньшей геохимической связью цезия с калием ввиду довольно заметного различия в их ионных радиусах (по сравнению с рубидием). [c.206]

    Для удаления из солей рубидия и цезия примесей других щелочных металлов большое значение может иметь обратимость лиотропного ряда [361, 362, 375]. Лиотропный ряд щелочных металлов Сз+>НЬ+>К >Ма+>Ь1+ — характеризует последовательность возрастания степени гидратации и, следовательно, уменьшения ад-сорбируемости катионов ионообменными смолами. Обратимость лиотропного ряда, т. е. лучшая сорбируемость, например, калия, чем рубидия, была обнаружена у фосфорнокислого катионита кальцит Х-219 [376]. Однако тщательное исследование подобных катионитов показало, что никакого нарушения порядка лиотропного ряда щелочных металлов не наблюдается [375, 377, 378]. Обратимость лиотропного ряда обнаруживается только тогда, когда десорбентом служит концентрированная кислота. В этом случае сорбируемость щелочных металлов определяется уже не радиусом гидратированного иона, а истинным радиусом последнего [361, 362]. Так, рубидий и цезий меняют свой порядок вымывания уже в 4 н. соляной кислоте [379]. Однако не все возможности, представляемые подобной обратимостью лиотропного ряда, были использованы для разработки технологии очистки солей рубидия и цезия путем ионообменной хроматографии. [c.346]

    На антибатность кристаллографических радиусов и подвижность ионов в водных растворах обращается внимание уже в элементарных курсах физической химии. Действительно, подвижность катионов лития, натрия, калия, рубидия и цезия (ряд, в котором кристаллографический радиус возрастает) равна соответственно 38,6 50,1 73,5 77,8 77,2. Эта закономерность объясняется снижением степени сольватации по мере роста Гщ, и как следствие этого уменьщением эффективного ионного радиуса. Отмеченную закономерность можно считать общей. Сводится она к следующему  [c.46]

    Электролитическое превращение хлоридов щелочноземельных металлов в перхлораты происходит легче, чем анодное окисление солей натрия или калия, при котором выходы по току относительно невелики. Однако в случае лития, имеющего малый ионный радиус и сходного с магнием по химическим свойствам, его хлорид легко превращается в перхлорат с высокими выходами - 30 С другой стороны, хлористый рубидий может быть окислен в процессе электролиза только до хлората- . [c.83]

    Продукты взаимодействия аммиака с кислотами представляют собой соли аммония. Соли аммония по многим свойствам похожи на соли щелочных металлов, особенно на соли калия и рубидия. Такое сходство объясняется тем, что размер иона аммония (радиус 1,48 А) близок к размерам ионов (1,33 А) и (1,48 А). [c.206]

    Краун-эфиры отличаются селективностью — наиболее прочные комплексы образуются, если радиус катиона соот1 етствуст размеру нолости макроцикла. Так, дибензо- 8-краун-6 реагирует преимущественно с ионами калия и в значительно меньшей степени — с ионами иатрия или рубидия, радиусы которых заметно отличаются от диаметра полости краун-эфира. [c.579]

    В опубликованных ранее работах, например [11], дается качественное описание процесса катионного обмена в цеолитах. Причем уже в первых публикациях сообщается о существовании ионно-ситового эффекта. Так, катионы натрия в природном апальциме обменивались па рубидий (радиус 1,48 А) и не обменивались на [c.551]

    Калпй К, рубидий НЬ, цезий С8 и франций Рг — полные электронные аналоги. Хотя у атомов щелочных металлов число валентных электронов одинаково, свойства элементов подгруппы калия отличаются от свойств натрия и, особенно, лития. Это обусловлено заметным различием величин радиусов их атомов и ионов. Кроме того, у лития в предвнешнем квантовом слое 2 электрона, а у элементов подгруппы калия 8. Ниже приведены некоторые сведения о литии, натрии и об элементах подгруппы калия  [c.592]


    Рубидий находится в поле5-элементов, составляющих металлы, именно— в подгруппе щелочных металлов, так как его наружный электронный у)5о-вень состоит только из одного электрона (з ). Радиус его атома третий по величине среди других атомов этой подгруппы (больший радиус у aтo юв франция н цезия). Ионизационный потенциал равен 4,18 в, т. е. очень мал меньшим потенциалом обладают только атомы цезия и франция. (Отсюда следующие выводы. [c.102]

    Оксиды элементов главной подгруппы I группы, т. е. оксиды щелочных металлов, получают косвенным путем. Только литий при сгорании в кислороде образует оксид 20, натрий дает пероксид МагОг, калий, рубидий и цезий — соединения типа МеОг. Известны также озониды типа МеОз. Все эти высшие оксиды —пероксиды и супероксиды — обнаруживают тем большую устойчивость, чем больше радиус атома металла, т. е. чем больше стабилизирующее действие катиона на пероксид-анион О .  [c.287]

    Металлы с объемно-центрированной кубической решеткой. К этой группе металлов принадлежат литий, натрий, калий, рубидий и цезий. Их структура в жидком состоянии исследовалась как рентгенографически, так и нейтронографически. Получаемые для них кривые интенсивности и вычисленные по ним кривые атомного распределения заметно не отличаются от соответствующих кривых для золота, меди, серебра или свинца, если не считать несовпадение максимумов, связанное с различием радиусов атомов и плотности металлов. [c.179]

    Для меди наиболее характерно окислительное число +2 (чаще) и +1, для серебра +1, для золота +3(чаще) и +1. Пока достраивается (л—1) -подуровень в предшестаующих элементах больших периодов, их атомные радиусы сравнительно мало изменяются, поэтому у меди, серебра и золота атомные радиусы значительно меньше, чем у калия, рубидия и цезия. Заряд ядра меди и серебра на 10 единиц больше, чем у калия и рубидия, а золота на 24 единицы больше, чем цезия. В связи с этим прочность связи внешних электронов у элементов подгруппы меди значительно больше, чем у калия, рубидия, цезия и потенциалы ионизации намною выше (см. табл. 3), особенно у золота (9, 22 в). В результате у элементов подгруппы меди небольшая химическая ак- [c.354]

    Соли аммония (ионный радиус КН4 1,43 А наиболее близок к ионному радиусу рубидия) по ряду свойств и растворимости занимают промежуточное положение между солями калия и рубидия. Однако алюмоквасцы калия раствори мы менее, чем алюмоквасцы аммония [45], что видно на рис. 15 [6]. [c.89]

    В зависимости от зарядов ионов, замещающих друг друга, различают изовалентные и гетеровалентные замещения. В изовалентном замещении участвуют ионы с одинаковыми электрическими зарядами и близкими ионными радиусами, например, ионы калия, аммония, рубидия, цезия взаимозаменяемы также ионы стронция, бария, радия, магния и железа (П). При гетеровалентном изоморфизме нзаимоза-мещаемы разновалентные ионы равных или близких ионных радиусов. При этом различия в ионных радиусах могут быть значительно большими, чем при изовалентном изоморфизме. Например, ионы Li" можно заместить ионами Mg + (ионные радиусы одинаковы — 0,78 А). Замещаются также ионы Na+ ионами Са +, хотя ионный радиус натрия 0,98 А, а кальция 1,06 А. С другой стороны, ионный радиус меди (I) и натрия соответственно 0,96 и 0,95 А, но медь (I) образует ковалентные соединения, натрий — ионные, поэтому смешанные кристаллы таких медных и натриевых солей не образуются. Ионы с близкими ионными радиусами образуют изоморфные ряды соединений. Чем ближе величины ионных радиусов, тем легче катионы образуют изоморфные соединения. [c.78]

    По современной теории кислот, оснований и солей, все кислоты содержат катгган гидроксония, т. е. являются солями гидроксония. Катион гидроксо н1я разрушается металлами с выделением водорода. Радиус 1юиа гидроксония ближе всего к радиусу калия, аммония — к радиусу рубидия та же аналогия и в ионных потенциалах (0,7 и [c.158]

    Из таблицы видно, что ПП кристаллов растут вместе с увеличением ковалентности связи в рядах МР<МС1< <МВг<М1. В горизонтальных строчках таблицы наблюдается немонотонное изменение ПП, вызванное иоляри- зующим действием анионов. Так, в результате разрыхляющего влияния фтор-иона на электронные оболочки цезия, рубидия и калия увеличивается концентрация электронов в межатомном пространстве и увеличивается ПП. Поскольку поляризующее действие галоген-ноиов падает с ростом радиуса, то увеличение ПП, начавшееся Б случае фторидов с калия, у хлоридов имеет место, уже начиная с рубидия, а у бромидов и иодидов — только с цезия, причем Аив1 = с и1— гвьвг>А 1 = пс8Т—/гш>г. [c.267]

    Как видно из приведенных данных, наиболее распро-транены в природе натрий и калий, которые встречают-я в виде хлоридов, сульфатов, силикатов и некоторых ругих соединений. Литий, рубидий и цезий входят в со-тав кристаллических решеток минералов тех элементов, которым они близки по атомным и ионным радиусам, убидий близок по ионному радиусу (0,073 нм) к калию 3,059 нм), и поэтому его соединения накапливаются в [c.411]

    Для меди наиболее характерна степень окисления + 2 (чаще) и +1, для серебра +1, для золота -ьЗ (чаще) и -Ы. Пока достраивается (п—1)й -подуровень в предшествующих элементах больших периодов, их атомные радиусы сравнительно мало изменяются, поэтому у меди, серебра п золота атомные радиусы значительно меньше, чем у калия, рубидия и цезия. Заряд ядра меди и се])ебра на 10 единиц больше, чем у калия и рубидия, а золота на 24 единицы больше, чем цезия. В связи с этим прочность связи внешних электронов у элементов подгруппы меди значительно больше, чем у калия, рубидия, цезия, и потенциалы ионизации намного выше (см. табл, 3), особенно у золота (9, 22 В). В результате у элементов подгруппы меди небольшая химическая активность (особенно у золота, на котором сказывается еще и влияние лантаноидного сжатия). Стандартные электродные потенциалы у них положительные (см. табл. 16). [c.442]

    С целью разработки технологической схемы извлечения галлия из щелочных растворов глиноземного производства изучена экстракция аиюминия из щелочных растворов азотсодержащим олигомерным экстрагентом (АОЭ). Показано, что алюминий экстрагируется подобно галлию в виде ионного ассоциата с капием. Определены основные закономерности экстракции алюминия, установлено, что при извлечении га> лия из поташных маточников алюминий будет соэкстрагироваться с галлием. Изучена экстракция щелочных элементов (ЩЭ) АОЭ из щелочных растворов. Показано, что они экстрагируются по катионообменному механизму. Определены основные закономерности экстракции ЩЭ, показано, что максимум эксфакции ЩЭ зависит от его ионного радиуса чем выше ионный радиус, тем при меньших значениях pH достигается максимум экстракции. Установлено, что при совместном присутствии галлия и ЩЭ в процессе экстракции галлия в органическую фазу переходит от 1 до 6 г/л калия, рубидий и цезий В органическую фазу практически не извлекаются. [c.82]

    Химические анализы образцов поллуцита различных месторождений указывают на переменное количество в минерале не только цезня и преобладающей примеси — натрия, но и других замещающих цезий элементов. Замещение цезия при этом обусловлено прежде всего явлениями изоморфизма. Так, весьма частыми спутниками цезия в поллуците являются рубидий и таллий — элементы, сходные между собой по химическим свойствам и имеющие ионные радиусы, близкие к ионному радиусу цезия [142]. В этом отношении интересны данные Л. Аренса [184] анализа образцов поллуцита на рубидий, таллий и другие второстепенные составные части минерала. Образцы поллуцита из месторождений штатов Мэн, Южная Дакота (США) и Варутреска (Швеция) содержали соответственно (вес. %)  [c.214]

    Среди веществ с по,чярными молекулами лучше других, за исключением аммиака, изучена адсорбция воды. Начальная изостерическая теплота адсорбции очень высокая, но уменьшается с увеличением заполнения. Опубликовано несколько работ, в которых тип обменного катиона в цеолитах X сопоставляется с теплотой адсорбции, служащей мерой спехщфичности. В работе Джигит и Киселева [129] показано, что калориметрически измеренные дифференциальные теплоты адсорбции воды зависят от энергии взаимодействия молекул как с обменными катионами, так и с отрицательными ионами кислорода каркаса. На рис. 8.25 представлена зависимость теплоты адсорбции воды от радиуса катиона при разных степенях заполнения полостей. Благодаря большому радиусу ионов калия, рубидия и цезия, взаимодействие молекул воды с катионами и ионами кислорода каркаса уменьшается. При больших величинах адсорбции молекулы воды взаимодействуют между собой с образованием водородных связей. Кроме того, с увеличением содержания в структуре воды катионы изменяют свои положения они гидратируются и смещаются в бо.льшие полости. [c.682]

    Сравнение устойчивости комплексов фторидов щелочных металлов с устойчивостью вышеописанного комплекса КСЬ А1(С2И5)з показывает, что, очевидно, с увеличением радиуса галоидного иопа комплексы становятся менее стабильными. В соответствии с этим бромистый и иодистый калий не образуют комплексов с триэтилалюминием, бромистые рубидий и цезий образуют, а иодистый цезий нет. Бромиды рубидия и цезия образуют с избытком триэтилалюминия два слоя, из которых нижний содержит комплекс 1 1. Очевидно, комплексы 1 2 здесь не существуют. Для того чтобы иодид был способен к образованию комплексов с триэтилалюминием, требуется еще более значительное увеличение одновалентного катиона (одновременно со снижением энергии решетки соли, см. ниже). Иодистый тетраэтиламмоний связывается с триэтилалюминием, причем существуют комплексы 1 1 и 1 2. Комплекс 1 2 образует подобно NaF-2Al( 2Hs)3 несмешивающуюся с триэтилалюминием жидкую фазу. Оба комплекса расщепляются эфиром. Уже Хайн и Полинг (см. работу [7], стр. 364) наблюдали образование слоев, но они приписывали образующемуся веществу с 2 молями четвертичной соли обратный состав. Может быть, эти авторы ошибались Если катионы и анионы расположить по возрастающим иоиным объемам (табл< 1) и отметить определенные поля плюсами или минусами в зависимости от того, наблюдается ли комплексообразованне с триэтилалюминием или нег, то граница между плюсовыми и минусовыми полями проходит по диагонали таблицы. Если для сопоставления добавить еще ион №, то он дает плюсовое поле также и для литиевого соединения. [c.51]


Смотреть страницы где упоминается термин Рубидий радиусы: [c.62]    [c.374]    [c.375]    [c.118]    [c.212]    [c.248]    [c.174]    [c.355]    [c.70]    [c.29]    [c.188]    [c.110]    [c.355]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.146 ]




ПОИСК





Смотрите так же термины и статьи:

Рубидий



© 2024 chem21.info Реклама на сайте