Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сталь конверторным методом

    Конверторный метод имеет ряд недостатков по сравнению с мартеновским. Качество бессемеровской стали ниже, чем мартеновской. Это объясняется тем, что в ходе дутья в металле растворяется заметное количество азота, что обусловливает склонность бессемеровской стали к старению — утрате с течением времени пластичности и возрастанию хрупкости. Бессемеровская сталь значительно лучшего качества получается при использовании кислородного дутья. [c.623]

    Температура затвердевания доменного чугуна обычно лежит около 1200 °С (причем переход из жидкого в твердое состояние сопровождается увеличением объема). Переработка его на сталь основным методам — конверторному и мартенов- [c.444]


    Конверторный метод, предложенный Бессемером, заключается в том, что через расплавленный чугун, находящийся в конверторе, продувают сильную струю кислорода. Выжигается углерод, содержащийся в чугуне, и окисляются примеси. Длительность процесса 10—20 мин. Этим способом получают мягкую сталь, а при практически полном удалении углерода — железо. Для получения стали процесс закапчивают раньше. [c.399]

    Почему при конверторном методе получения стали количество фосфора в ней уменьшается при наличии основной футеровки, в состав которой входят окислы кальция п магния Почему при наличии кислой футеровки (ЗЮг) количество фосфора практически не уменьшается  [c.32]

    Мартеновский процесс. Интенсивное развитие производства стали конверторным способом в середине XIX в. привело к быстрому накоплению скрапа — стального лома, обрезков и других отходов металлообрабатывающей промышленности, переработка которого в крупном масштабе оказалась возможной лишь с помощью мартеновского процесса. Данный процесс получения литой стали связан с плавкой шихты, составляемой из смесей чугуна и стального лома, применяемых в различных пропорциях.. Мартеновское производство характеризуется гибкостью и универсальностью технологического процесса. Этот метод сделался основным в выработке стали (больше 80% всей ее мировой выплавки). В мартеновских печах, имеющих различные емкости от 1 до 500 т выплавляются как обычные, так и высококачественные сорта сталей. [c.185]

    Примерный ход освобождения доменного металла от важнейших примесей к железу при кислой и основной обкладках конвертора показан на рис. XIV-10. Как видно из рисунка, процесс в обоих случаях Ю мин заканчивается очень быстро — за 10— 15 мин, что и является важнейшим достоинством конверторного метода. Основной его недостаток заключается в том, что ни при кислой, ни при основной футеровке (обкладке) конвертора из металла ие удаляется содержащаяся в нем сера, сообщающая стали ломкость при нагревании. Поэтому конверторный метод может быть применен только к чугунам, содержащим не более 0,05% серы. Другим важным недостатком является загрязнение металла образующимися за счет азота воздуха нитридами железа, сообщающими стали хрупкость при сильном охлаждении. Наконец, применимость обычного конверторного метода ограничена чугунами, содержащими сравнительно большие количества легкоокисляющихся примесей, так как только в этом случае нри дутье создается температура, достаточно высокая для поддержания железа в расплавленном состоянии. [c.330]

    Получение стали из чугуна может осуществляться тремя методами 1) конверторным, который заключается в продувке расплавленного чугуна воздухом или кислородом в конверторах с различной внутренней футеровкой 2) мартеновским в печах Сименса — Мартена с регенерацией тепла отходящих газов 3) электроплавкой в электродуговых, индукционных или высокочастотных печах. В двух последних случаях окисление углерода осуществляется добавлением в расплавленный чугун железной руды или скрапа (отходы ржавого железа, лом). [c.309]

    Небольшое количество стали выплавляют в конверторах. Сущность конверторного или, по фамилии изобретателя, бессемеровского метода состоит в продувании струи воздуха через расплавленный чугун. При этом углерод и примеси сгорают и удаляются в виде газов или переходят в шлак. Конвертор представляет собой сосуд грушевидной формы, поворачивающийся на горизонтальной оси. Заливка чугуна и выливание готовой стали производятся в горизонтальном положении конвертора, а продувка воздухом — в вертикальном. [c.623]

    БЕССЕМЕРОВСКИЙ ПРОЦЕСС - процесс переработки чугуна в сталь в аппаратах-конверторах грушеобразной формы путем продувания воздухом или воздухом, обогащенным кислородом, через расплавленный чугун для удаления примесей — углерода, кремния, марганца, фосфора. Б. п. предложен в 1856 г. Г. Бессемером. Для улучшения качества стали советский ученый Коробов разработал метод, по которому кислород продувают через горловину конвертора, в результате чего сталь избавляется от пузырьков кислорода и азота и качество конверторной стали приближается к качеству мартеновской. [c.43]


    КОНВЕРТОР — грушеобразный аппарат для производства стали из расплавленного чугуна. Через горловину К. продувают воздух или воздух, обогащенный кислородом, или кислород. Такой метод производства стали называют конверторным. [c.133]

    Получение стали из чугуна в настоящее время осуществляется тремя методами 1) конверторная сталь, включая и конверторы с обогащенным и кислородным дутьем 2) мартеновская сталь, получаемая в печах Сименс — Мартена с регенерацией теплоты отходящих газов 3) электросталь, получаемая в электродуговых, индукционных и высокочастотных печах. Этот металлургический процесс обычно применяется для получения высоколегированных сталей с особыми свойствами, Сун ность сталеплавильного процесса сводится к окислению примесей в чугуне и снижению содержания угле- [c.364]

    Вместе с тем недавно был предложен метод переплавки чугуна на сталь, по-видимому, еще более эффективный, чем кислородно-конверторный. Как видно из рис. Х1У-5, по этому пульверизационному методу жидкий чугун И одновременно подаваемый в реакционное пространство известковый порошок распыляются вводимым под давлением кислородом с образованием своего рода [c.445]

    Железо получают пирометаллургическими методами в виде сплавов с углеродом (доменный, конверторный и мартеновский процессы). В настоящее время чистое железо производят в сравнительно малых масштабах путем электролиза водных растворов (обычно рафинированием стали), разложения в вакууме карбонила железа, прямого восстановления из оксидов, выделенных заранее в чистом виде. [c.414]

    Методы передела чугуна в сталь мартеновский и конверторный способы. [c.73]

    При конверторном способе кислый метод передела чугуна в сталь называется бессемеровским, основной же метод носит название томасовского. [c.397]

    Так, при контроле быстропротекающих процессов, например при конверторной выплавке стали, главным требованием является короткое время между отбором пробы и получением результата. В таких случаях вполне оправдано оснащение контрольного пункта дорогостоящими приборами, затрата времени на предварительную подготовку прибора, полное переключение исполнителя только на одну операцию. Наоборот, при анализе сырья, выдаваемого с определенного рудника, или для анализа горных пород при промышленном бурении часто целесообразно применять простые классические методы весового и объемного анализа. Они длительны, т. е. результат получается не скоро после начала работы. Однако они нередко экономичнее по среднему количеству затраченного труда, так как один исполнитель может вести одновременно много проб. Кроме того, классические методы часто дают лучшие результаты при анализе нестандартных проб. [c.29]

    Сейчас в промышленность внедряются скоростные процессы, и, чтобы обеспечить контроль по ходу технологического цикла, необходимо располагать соответствующими экспрессными аналитическими методами. Например, в современном сталеплавильном производстве широко используют конверторную плавку, которая продолжается 15—30 мин. Классические методы анализа стали по ходу плавки здесь, конечно, непригодны. Нужны способы, позволяющие оценить содержание главных интересующих технолога элементов за считанные секунды или минуты. На горнодобывающих и обогатительных предприятиях важно хотя бы грубо оценивать содержание полезного металла в руде не понизилось ли оно настолько, что руда пошла некондиционная. Это надо делать мгновенно, непосредственно в движущихся вагонетках или на транспортере. Экспрессные анализы нужны службе охраны природы о наличии вредных примесей в воде или воздухе необходимо знать как можно скорее. Без скоростных методов анализа не обойтись и многим областям науки. [c.23]

    Переход от традиционных химических и частично физико-химических методов к автоматизированным физическим методам анализа, в первую очередь к эмиссионному спектральному анализу, невозможен без стандартных образцов. Примером может служить кислородно-конверторное производство стали, которое без экспрессного спектрального анализа в настоящее время неосуществимо. По данным ВИМСа, замена химических методов на спектральные в лаборатории геологической службы, которая выполняет 25 тысяч элементо-определений в год, дает ежегодную экономию только на стоимости анализов, равную 40 тыс. руб. Таких лабораторий в геологической службе сотни. [c.176]

    Методы переработки чугуна. Переработка чугуна на сталь осуществляется конверторным (бессемеровским и томасовским) и мартеновским методами, а также электроплавкой. [c.446]

    Передел чугуна в сталь заключается в уменьшении количества углерода путем его окисления, в возможно полном удалении серы и фосфора и в доведении в стали до нужных пределов содержания кремния, марганца и других элементов. Окисление углерода можно осуществлять двумя методами продувкой кислорода через расплавленный чугун — конверторный способ и добавлением в рас- [c.120]

    Нередко точность химического анализа можно повысить, если ввести некоторые дополнительные операции, например, длительное отстаивание раствора для более полной кристаллизации осадка, или повторную экстракцию, или предварительное отделение некоторых компонентов и т. п. Если, например, необходимо установить содержание фосфора в метеорите или в новом месторождении железной руды, тогда затрата времени и реактивов на дополнительные операции вполне оправдана. Однако для контроля быстро протекающих технологических процессов, например при конверторной выплавке стали, такие способы увеличения точности теряют смысл. Нередко целесообразно применять менее точные, но более быстрые методы анализа. Тем не менее во всех случаях необходима количественная оценка точности метода. Некоторые приближенные методы анализа бывают привлекательными, но применение их недопустимо, если их точность не соответствует научной задаче или определенным техническим условиям на данный материал. [c.27]

    ТОМАСОВСКИЙ ПРОЦЕСС — конверторный метод производства стали из чугуна с повышенным содержанием фосфора (не менее 2%), окисление которого обеспечивает температуру, необходимую для проведения процесса. Конверторы должны иметь основную футеровку (из оксида магния и извести) для связывания пепт-оксида фосфора в шлак. Метод разработан английским металлургом Дж. Томасом в 1878 г. Шлак (см. Томасшлак) примен яют в качестве фосфорного удобрения без дополнительной химической переработки. [c.252]

    Мартеновский процесс — переработка чугунов разного состава в сталь. Предложен французским металлургом П. Мартеном в 1864 г. В отличие от конверторного метода плавку ведут в печи. Для плавки используют предварительно нагретые газы. М. п, имеет премущество перед конверторным в том, что во время получения стали можно удалять ненужные элементы, проводить анализ металла и добавлять те или иные компоненты для выплавки специальных сталей. [c.80]

    Главная масса чугуна, выплавляемого в домнах, пдет на переработку в сталь н для получения ковкого железа. Переработка чугуна в сталь связана с удалением серы, фосфора, кремния, марганца и снижением содержания углерода (до 2% и менее). Примеси выжигают из чугуна в конверторах, мартеновских печах или электропечах. По конверторному методу расплавленный чугун из доменной печи поступает в конвертор — поворачивающийся вокруг горизонтальной оси большой сосуд, выложенный изнутри огнеупорным материалом и [c.397]


    Главная масса чугуна, выплавляемого в домнах, идет на переработку в сталь и для получения ковкого железа. Переработка чугуна в сталь связана с удалением серы, фосфора, кремния, марганца и снижением содержания углерода [до 2% (масс.) и менее]. Примеси выл<игают из чугуна в конверторах, мартеновских печах или электропечах. По конверторному методу расплавленный чугун из доменной печи поступает в конвертор — поворачивающийся вокруг горизонтальной оси большой сосуд, выложенный изнутри огнеупорным материалом и имеющий на дне отверстия для продувания воздуха (рис. 72). При продувании сильной струи воздуха происходит выгорание углерода, кремния, марганца, фосфора, содержащихся в чугуне. Дутье прекращают, не допуская полного выгорания углерода. [c.452]

    Конверторный метод имеет ряд неодстатков по сравнению с мартеновским. Качество бессемеровской стали ниже, чем мартеновской. Это объясняется тем, [c.660]

    Наиболее привлекательными и высокопродуктивными оказались методы производства литой стали — конверторный, мартеновский и электроплавка, основанные на переделе чугуна. Целью передела является удаление избытка углерода, марганца, кремния и других примесей, а также снижение до минимума, содержания, особенно вредных элементов — серы и фосфора. Осро-бождение чугуна от указанных элементов основано на их окислении. Так, углерод при окислении превращается в летучую газообразную окись углерода СО. Остальные элементы превращаются в нерастворимые или малорастворимые в металле окислы и другие соединения, образующие с флюсами шлаки, накапливаю- [c.181]

    ЧуГуны произвольного состава в отличив от кон вё()торйых способов могут быть переработаны мартеновским методом. Процесс Мартена заключается в окислении примесей (51, Мп, С, 5, Р) кислородом воздуха, который пропускают над раскаленным металлом и кислородом, содержащимся в окислах железа последние присутствуют в мартеновской печи в виде металлолома, требующего переплавки, и в. виде некоторого количества железной руды, предварительно загружаемой в печь. Для разогрева мартеновской печи, имеющей открытый под, сжигают предварительно разогретые нефть или горючий газ. При сгорании топлива образуется факел температурой 1700—1900°. Металл и руда плавятся, и в расплав вводят специальные добавки, необходимые для получения сталей заданного состава. В мартеновском способе, так же как и в конверторном, кислородное дутье сильно интенсифицирует процесс. [c.351]

    В черной металлургии дальнейшее развитие производства стали будет происходить за счет внедрения кислородно-конверторного и злектросталеплавильного методов. В цветной металлургии предстоит совершенствовать технологию переработки руд и концентратов повысить комплексность и полноту использования минерального сырья ускорить внедрение автотенных, гидрометаллургических, микробиоло ических и других эффективных технологических процессов. Сильно возрастет производство алюминия, меди, никеля, кобальта, цинка, свинца, титана, магния, драгоценных металлов, вольфрама, молибдена, ниобия и других лег[фу1сших металлов. [c.353]

    Конвертор (англ. onverter, от лат. onvertere — превращать) — аппарат (вид печи) для получения стали из расплавленного чугуна продувкой через него воздуха (атмосферного или обогащенною кислородом). Такой метод получения стали называют конверторным, [c.70]

    Для автоматизации производства необходимы контроль нераз-рущающими методами и широкое использование современных физических методов экспрессного анализа результаты анализа должны быть оформлены в виде электрических сигналов. К числу таких физических методов относятся эмиссионный спектральный анализ с фотоэлектрической регистрацией (квантометры, в том числе для вакуумной области спектра), рентгенофлуоресцентный метод также с использованием соответствующих квантометров, автоматические методы определения углерода,серы,кислорода, водорода и азота в металлах и сплавах. В первую очередь решаются задачи автоматизации анализа в кислородно-конверторном производстве стали, которое получило большое развитие. Мы уже говорили в начале книги, что плавка в этом случае длится 15—25 мин, а по ходу ее нужно получать информацию о составе жидкой стали, например о содержании углерода. Эту задачу в значительной степени решают вакуумные квантометры, позволяюш.ие определять в числе прочих элементов углерод, серу, фосфор. При анализе простых сталей определение трех названных элементов составляет 60—707о всех определений. Другое направление внедрения прогрессивных аналитических методов — автоматизация электросталеплавильного производства. Конечно, автоматизированные методы анализа нужны и доменному, и мартеновскому, и коксохимическому производствам, и горнорудным предприятиям. [c.144]

    В ЦЗЛ крупных заводов черной металлургии организованы специальные квантометрические лаборатории, которые включают и оптические, и рентгеновские приборы. Это позволяет уменьшить число сотрудников в химических лабораториях. Например, на Ена-киевском металлургическом заводе после внедрения двух квантометров штат химических лабораторий был сокращен со 110 до 73 человек. На более крупных заводах возможно более значительное сокращение штата. Как показывает опыт применения новых квантометрических методов анализа, изменение аналитических методов ведет к изменениям в самом основном технологическом процессе выплавки металла. Ускорение анализа при применении вакуумных квантометров даже в конверторном цехе повышает производительность на 2—3%. Повышение точности анализа позволяет работать на нижних пределах легирования марок сталей и сплавов, что дает большую экономию легирующих материалов. Как показывает опыт работы вакуумных квантометров на заводах МЧМ СССР, применение двух квантометров дает годовой здоно- [c.145]

    КОНВЕРТОРНАЯ СТАЛЬ (от лат. соцуег1о — изменяю, превращаю) — сталь, выплавляемая в конверторах. Используется со второй половины 19 в. К. с. подразделяют на бессемеровскую сталь и томасовскую сталь. Получают продувкой расплавленного передельного чугуна сжатым воздухом до следов углерода, в результате сталь насыщается кислородом и азотом (рис. 1, 2 с. 612). Несмотря на применение эффективных методов раскисления, высокое остаточное содержание газов приводит к получению стали с низкими фи-зико-мех. св-вами повышенной [c.611]

    Значительные затраты теплоты на подогрев и плавление шихты, на протекание эндотермических реакций требует применения на многих плавильных агрегатах использования высококалорийного топлива. Спецификой высокотемпературных процессов в сталеварении является также необходимость использования кислорода. Как уже отмечалось, спецификой нашей страны является сохранение определенного парка мартеновских печей, которые еще обеспечивают около 20 % производства стали. Использование высококалорийных топлив, кислорода осуществляется почти на всех действующих и проектируемых сталеплавильных агрегатах (мартеновские, двухванные печи, дуговые электропечи, САНДы, рафинировочные агрегаты), а также на вспомогательных производствах (сушка ковшей, подофев лома, обжиг огнеупорных материалов и др.). В мартеновском, конверторном, элекфосталеплавильном производстве при продувке металла кислородом организуется своеобразный обращенный топливный факел факел кислорода горит в окружении технологического топлива — оксида углерода. Получили распросфанение и пофужные (например, газокислородные) факелы. Отметим, что в медеплавильных печах при автогенных процессах образуется своеобразный, так называемый, сульфидный технологический факел [11.24,11.85]. Как уже отмечалось (см. кн. 1, га. 6, а также п. 11.8.2), применительно к металлургии понятие факел имеет достаточно широкое, не только топливное, но и технологическое приложение. Совершенствование методов сжигания, улучшение теплоотдачи от факелов является важным фактором энергосбережения. [c.492]

    Б180778. Разработка методов сокращения вредных выбросов в атмосферу при кислородно-конверторном производстве стали. - ЦНИИЧермет. 1972 г., 28 стр. [c.179]


Смотреть страницы где упоминается термин Сталь конверторным методом: [c.445]    [c.681]    [c.446]    [c.43]    [c.357]    [c.596]    [c.422]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.329 ]




ПОИСК





Смотрите так же термины и статьи:

Конверторный газ

Сталь конверторная



© 2024 chem21.info Реклама на сайте