Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическое равновесие ионного обмена

    Первой стадией этого процесса является ионный обмен, второй — образование осадка. В результате ионного обмена концентрация ионов серебра в растворе возрастает и при достижении произведения растворимости выпадает осадок хлорида серебра. Третьей стадией является закрепление образовавшегося осадка на зернах носителя—ионита. Как показал А. А. Лурье, на ионообменниках с высокой обменной емкостью первые две стадии процесса четко разграничены во времени и пространстве. Сначала происходит вытеснение из ионита иона-осадителя и его диффузия в раствор, затем химическое взаимодействие иона-осадителя с ионом электролита в растворе и выпадение осадка вне матрицы, на поверхности зерна. Последнее объясняется не стерическими факторами, а действием мембранного (доннановского) потенциала (см. гл. П1). Мембранное равновесие приводит в этом случае к почти полному вытеснению электролита из фазы ионита, т. е. матрицы. [c.165]


    Основное содержание учебника составляют разделы, которые, судя по монографиям и периодической литературе, наиболее необходимы биологам. Прежде всего это основы термодинамики и химическое равновесие, физическая химия растворов неэлектролитов и электролитов, учение о пограничных потенциалах и электродвижущих силах, химическая кинетика и катализ. В дополнение к традиционному изложению этих разделов приведено описание некоторых специфических приложений физической химии, важных для биологии. Так, кратко рассмотрены свойства полиэлектролитов, ионный обмен, мембранное равновесие и мембранные потенциалы, ионоселективные электроды, основы хроматографии и экстракции. [c.3]

    Подвижные обменивающиеся ионы проникают через поверхность ионита в обоих направлениях, а высокомолекулярные ионы с противоположным зарядом, из которых состоит основная масса ионита, неподвижны. Поэтому поверхность зерна ионита можно рассматривать как мембрану, проницаемую для одних ионов и непроницаемую для других. На этой условной мембране устанавливается равновесие, которое называют мембранным или доннановским, по фамилии Ф. Доннана, опубликовавшего в 1911 году теорию равновесия для полупроницаемых мембран. Возможно теоретическое описание закономерностей ионного обмена как процесса, идущего через полупроницаемую мембрану [52, 180, 181]. Получаемые при этом результаты оказываются тождественными описанным выше на основе представлений об ионном обмене как о гетерогенной химической реакции. [c.307]

    При подготовке пятого издания в него внесены дополнения и изменения и сделаны некоторые сокращения. Введены два новых раздела "Классы неорганических соединений" и "Периодический закон и свойства соединений". Раздел 5 назван "Термохимия и химическое равновесие", в нем собраны задачи и упражнения по расчету изменения энтальпии, энтропии, свободной энергии Гиббса, по их применению для описания химических реакций и по расчету концентраций в равновесных системах. Главы "Равновесие в растворах электролитов" и "Направление обменных химических реакций в растворах электролитов" объединены в один раздел "Ионные реакции в растворах". Этот раздел существенно переработан. В раздел, посвященный химии отдельных элементов, включены упражнения по составлению уравнений реакций, отражающих важнейшие свойства их соединений. Несколько сокращена глава "Физико-химические свойства разбавленных растворов" и ей дано другое, более конкретное, название "Коллигативные свойства растворов", отражающее то, что в данном разделе рассматриваются свойства растворов, зависящие от концентрации частиц. Исключена глава "Радиоактивность. Ядерные реакции", так как обсуждаемые в ней вопросы фактически являются содержанием физики. Все изменения имели своей целью приблизить содержание задач и упражнений к химической практике. При переработке пособия мы стремились сохранить содержание, поэтому задачи и упражнения, имевшиеся в четвертом [c.3]

    Природная глина является продуктом коагуляции, проходящей в геологическом масштабе. В глинистых суспензиях коагуляция в различных ее формах также является доминирующим состоянием. Соответственно все процессы приготовления, обработки и применения буровых растворов направлены по пути ослабления коагуляции (пептизация и разбавление), ее сдерживания или предотвращения (стабилизация, коллоидная защита), регулирования (ингибирование) или усиления (электролитная, температурная агрессия, концентрационное загущение). Эти изменения смещают равновесие в сторону усиления или ослабления связей между глинистыми агрегатами, влияют на их лиофильность и дисперсность. В результате устанавливаются промежуточные равновесные состояния, которые и определяют технологические показатели буровых растворов. Таким образом, все протекающие в них изменения являются различными формами единого коагуляционного процесса, управляемого общими. закономерностями системы глина — вода, в которой этот процесс реализуется, и его физико-химическим механизмом. Проявлением этого механизма является модифицирование твердой фазы путем поверхностных реакций замещения и присоединения, включающих в себя гидратацию, ионный обмен и необменные реакции. Такого рода модифицирование, осуществляемое обработкой химическими реагентами, определяет уровень лиофильности системы, сдвигая его в должном направлении. При этом получают развитие факторы, влияющие на дисперсность, — набухание, пептизация или, наоборот, структурообразование и агрегирование. [c.58]


    Равновесная концентрация в ионите меньше полной обменной емкости, когда обратная реакция ионного обмена считается полностью подавленной. На равновесную концентрацию влияют все факторы, определяющие химическое равновесие реакции ионного обмена, включая величину pH и температуру. [c.211]

    Об ионном обмене сказано далее. Распределение вещества между двумя жидкими фазами следует из условия равенства его химических потенциалов в равновесии [c.70]

    В приведенной реакции и —очень большое число. Частицу смолы можно схематически изобразить в виде тела неправильной формы (рис. 19.1), покрытого диссоциированной сульфокислотой или сульфо-группами —807). Атомы других элементов, входящих в состав смолы, показывать нецелесообразно в силу незначительного влияния их на процесс обмена. Частица смолы в целом должна быть электрически нейтральна это означает, что каждая сульфогруппа должна ассоциироваться с одновалентным катионом (или две группы — с двухвалентным катионом и т. д.). Природа катиона, удерживаемого каждым сульфонат-ионом, определяется только химическим равновесием с окружающим водным раствором. Так, если колонку смолы промыть 5%-ным раствором соляной кислоты, то все адсорбируемые катионы будут из нее удалены и их место займут ионы водорода. Если затем через колонку пропустить раствор сульфата натрия, то произойдет обмен ионов водорода на ионы натрия и в вытекающем из колонки растворе будет обнаружена серная кислота. Эта реакция выглядит так  [c.270]

    Величина равновесного потенциала зависит от концентрации ионов в электродном растворе. Чем она больше, тем затруднительнее переход катионов в раствор. Поэтому с повышением концентрации ионов отрицательный заряд металла уменьшается (по абсолютной величине), электрод становится более положительным. Следует помнить, что равновесие между металлом и раствором, как и всякое химическое равновесие, является динамическим. Между электродом и раствором при данном значении (р идет непрерывный обмен катионами. [c.175]

    Как было показано в предыдущей главе, закон действия масс можно применять для описания химических равновесий не только в гомогенных, но и в гетерогенных системах (см. раздел по ионному обмену гл. 14, раздел УА). [c.494]

    Для электрохимического возникновения разности потенциалов между двумя фазами необходим несбалансированный переход зарядов (ионов или электронов) из одной фазы в другую. Направление такого перехода зависит от энергетических характеристик начального состояния фаз. При равновесном потенциале реакция перехода по данным внешнего баланса полностью прекраш ается. В действительности, как и при установлении химического равновесия, прямая реакция протекает с конечной скоростью, но она компенсируется обратным переходом, имеющим точно такую же скорость. Устанавливается непрерывный обмен зарядами в обоих направлениях. [c.26]

    Успешно развиваются теоретические и экспериментальные исследования по термодинамике многокомпонентных систем, по фазовым равновесиям при высоких давлениях, по теории кислот и оснований, по ионному обмену, по комплексообразованию и сольватации в растворах электролитов, по физико-химическим основам перегонки и ректификации, изучается связь равновесных и неравновесных свойств растворов с их структурой. [c.291]

    При обмене подвижного иона смолы с различными ионами раствора достигается химическое равновесие. Например, при контактировании ионообменной смолы в кислой форме (насыщена водородными ионами) с раствором Ри(П1) ионы водорода переходят в раствор, замещаясь ионами Ри +, количество которых составляет одну треть от числа водородных ионов, перешедших в раствор. Вполне попятно, что теперь ионы Ри + ионообменной смолы могут замещаться водородными ионами, находящимися в растворе. Когда концентрация плутония в смоле станет такой, что скорости обратного и прямого ионного обмена сравняются, система придет в состояние истинного химического равновесия  [c.39]

    Следует отметить , что если химическое равновесие устанавливается медленно, то обычно и соответствующее изотопическое равновесие устанавливается медленно. Так, ионы ЗО " в водных растворах восстанавливаются бесконечно медленно и обмен атомами изотопов серы между сульфат-ионами и соединениями, где сера имеет меньшую степень окисления, также идет бесконечно медленно. [c.308]

    Иная возможность открывается при рассмотрении ионообменных процессов с участием резинатов. Естественно, что подобный анализ исключает возможность введения равенства химических потенциалов, так как при этом будет нарушено условие (3. 13) для замкнутой системы. Следует отметить, что при использовании моделей резинатов отпадает необходимость однотипной стандартизации компонентов в растворе и в ионите. Далее, при эквивалентном ионном обмене, когда флуктуация соответств ет малому смещению именно стехио-метрического ионного обмена, можно исключить работу электрических сил, так как в подобном процессе она полностью компенсируется перемещением ионов в прямом и обратном направлении между фазами. Кроме того, для малых сдвигов от состояния равновесия можно ввести уравнения связи  [c.81]

    Исторически сложилось так, что первые попытки количественного описания ионообменного равновесия относились к неорганическим ионитам — главным образом, алюмосиликатам. Можно отметить целый ряд эмпирических и полуэмпирических уравнений, попытки применить закон действующих масс или уравнение изотермы адсорбции газов — в зависимости от взглядов на ионный обмен (химическую реакцию двойного обмена, идущую во всем объеме частицы ионита, или обменную адсорбцию, идущую на поверхности частицы). Из этих эмпирических уравнений следует отметить уравнение Ротмунда и Корнфельд [240] [c.189]

    Б. Физическая химия. Общие вопросы. Некоторые вопросы субатомного строения вещества. Превращения ядер. Атом. Молекула. Химическая связь. Молекулярные спектры. Кристаллы. Газы. Жидкости. Аморфные тела. Радиохимия. Изотопы. Термодинамика. Термохимия. Равновесия. Фазовые переходы. Физико-химический анализ. Кинетика. Горение. Взрывы. Топохимия. Катализ. Радиационная химия. Фотохимия. Теория фотографического процесса. Растворы. Теория кислот и оснований. Электрохимия. Поверхностные явления. Адсорбция. Хроматография. Ионный обмен. Химия коллоидов. Дисперсное состояние. [c.29]

    Определение коэффициентов активности солей в растворе и в смоляной фазе, имеющее универсальное значение для более точного количественного описания ионообменного процесса, в свою очередь исходит из определенной физической картины (выбор стандартного состояния) Ниже будет кратко изложен материал по двум наиболее важным представлениям об ионообменном процессе ионный обмен как мембранное равновесие и ионный обмен как гетерогенная химическая реакция двойного [c.89]

    Как известно, разделение бария и радия при получении последнего является одной из труднейших задач в химической технологии неорганических веществ до недавнего времени эта задача решалась исключительно методом дробной кристаллизации. Рейд [1] предложил использовать для этой цели ионный обмен в статических условиях в многоступенчатом (пять ступеней) процессе. В качестве катионита был использован катионит цеокарб в Н-форме. Константа обмена бария на водород на этом катионите при 25° оказалась равной 0,84 константа равновесия реакции обмена радия на барий равнялась 1,22. Катионит помещали в цилиндры высотой [c.128]


    С этих позиций ионный обмен рассматривается как гетерогенная химическая реакция двойного обмена и равновесие (статика) описывается законом действующих масс [81—85]. Обоснование такого подхода и удобную форму записи этого закона применительно к ионообменным процессам предложил Б. П. Никольский [c.15]

    Статическую обменную емкость вычисляют на основании данных титрования по разности между количеством щелочи или соляной кислоты, израсходованным на титрование контрольного раствора и раствора, находившегося в контакте с зернами ионита. При этом величину статической обменной емкости выражают в мг-экв сорбированного иона на 1 г сухого ионита. Этим путем определяется емкость ионита в равновесных условиях. Однако для достижения полного равновесия при ионном обмене требуется 5—6 суток при условии, что температура постоянна. Опыт необходимо проводить поэтому в термостате. Статическая емкость зависит от pH раствора, концентрации раствора, химических свойств обменивающихся ионов, от температуры опыта. [c.141]

    Так определяется емкость ионита в равновесных условиях. Однако для достижения полного равновесия при ионном обмене требуется 5—6 суток при условии, что температура постоянна. Опыт поэтому необходимо проводить в термостате. Статическая емкость зависит от pH раствора, концентрации, химических свойств обменивающихся ионов, от температуры опыта. [c.149]

    Второй уровень обучения базируется на изучении химии воды и микробиологии. Процесс изучения этого курса включает следующий объём учебных работ лекции (.32 час.), лабораторные работы (24 час.) и самостоятельную работу студентов. Программа по химии воды и микробиологии состоит из следующих основных разделов общая микробиология (морфология и систематика микроорганизмов, аэробные и анаэробные процессы очистки сточных вод), основы аналитической химии, физико-химические методы очистки сточных вод (адсорбция, коагуляция, ионный обмен). Теоретический материал подкрепляется расчётами химических равновесий, pH, ПР труднорастворимых соединении. [c.135]

    Система диоксид углерода — карбонат является одной из наиболее сложных и важных для гидросферы. Она участвует в обмене воздух — поверхностные слои воды, влияет на химию водной системы, биологическую структуру организмов и отложение осадка, содержащего углерод. От этой системы зависит pH среды, что непосредственно влияет на некоторые химические равновесия в данной локальной системе, особенно в отношении ионов, образующих комплексы. Она непосредственно влияет на биологический цикл организмов, в которых углерод используется в процессах развития, гибели и разложения. [c.316]

    Скорость установления ионного равновесия зависит от гидродинамического режима, концентрации химических соединений в стоках, структуры зерна ионита. На обменную емкость ионообменных материалов оказывает влияние абсолютная концентрация катионов и анионов, конкурирующих за места в ионите. [c.487]

    Препаративно наиболее важными являются синтезы иодидов и фторидов. Однако техника МФК может быть использована также и для получения хлоридов, бромидов и иодидов, содержащих изотопную метку. Старкс [4] нашел, что полное равновесие С1/з С1 между 1-хлороктаном и На С1 в присутствии четвертичной соли в качестве катализатора достигается при кипении смеси за 5 ч. Аналогичный обмен иод — радиоактивный иод при 100 °С проходит полностью за 5 мин [4]. При обмене химически неэквивалентных групп X и превращение могут лимитировать как равновесие экстракции двух ионных пар Q+X и так и химическое равновесие [c.109]

    Обменные реакции в растворах относятся к ионным реакциям, протекающим в обоих направлениях с большими скоростями (практически мгновенно). Они представляют пример химического равновесия, к которому применим принцип смещения равновесий Ле Шателье. В соответствии с этим принципам реакцию можно провести достаточно полно, если какое-либо вещество будет удаляться в ходе ее протекания. Удаление вещества в них осуществляется либо за счет более прочного связывания ионов с образованием малорастБоримого или слабодиссоциированного соединения, либо за счет выделения газообразного продукта реакции. [c.34]

    Реакция протекает вправо при избытке кислоты. Ионит в колонке отмывают водой от избытка кислоты, после чего ионит готов к применению. Пробу пропускают через колонку, колонку промывают водой или элюентом. Собирают элюат целиком или по фракциям. Перед каждым последующим применением необходимо проводить регенерацию ионита в колонке, так как в колонке содержатся различные ионы (например, Х , Хг). Происходящий при этом химический процесс аналогичен описанному уравнением (7.4.5). Процесс замены ионов Х+ ионами Хь Ха. .. называют регенерацией ионита, чтобы подчеркнуть, что ионит при этом возвращается в свое исходное состояние. Для сдвига равновесия вправо необходимо подобрать нужную концентрацию кислоты. Концентрированные растворы повышают скорость ионного обмена, но из-за высокой вязкости раствора снижается диффузия ионов. Поскольку процесс ионного обмена протекает сте-хиометрически, можно рассчитать полную обменную емкость колонки, зная количество ионита. Но рассчитанную обменную емкость не всегда можно полностью использовать (разд. 7.3.1.1). Пусть в колонке имеется ионит в Н -форме. Требуется провести ионный обмен с ионами К" . В месте подачи анализируемой пробы в колонку происходит полный обмен ионов Н+ на ионы При дальнейшем пропускании раствора, содержащего ионы К (фронтальная техника проведения ионного обмена), происходит смещение зоны, заполненной ионами К" , вниз. При этом колонку можно разделить на три слоя (рис. 7.17). В первом слое находится ионит только в К" -форме, во втором слое — ионит, содержащий оба иона, в третьем слое — ионит, содержащий ионы Н" . Распределение концентраций происходит по 8-образной кривой (ср. с формой полос элюентной хроматографии). При дальнейшем пропускании раствора КС происходит зарядка второго слоя ионами до проскока. Число ионов К" , которые могут быть количественно поглощены колонкой до проскока ионов, называют емкостью колонки до проскока. Эта емкость меньше величины полной емкости колонки, так как проскок К" -ионов наблюдается в тот момент, когда в колонке еще содержатся Н+-ионы. [c.378]

    Ионообменная способность сорбентов характеризуется их обжинай емкостью, зависящей от числа функциональных ионогенных групп в единице массы или объема ионита. Она выражается в миллиэквивалентах на 1 г сухого ионита или в эквивалентах на 1 м ионита и для большинства промышленных ионитов находится в пределах 2—10 мэкв/г. В статических условиях (при контакте с определенным объемом раствора электролита) определяют полную статическую обменную емкость (ПСОЕ), которая для данного ионита является постоянной величиной, и равновесную статическую обменную емкость (РСОЕ), которая изменяется в зависимости от факторов, влияющих на равновесие. (Равновесие ионит — раствор соответствует равенству их химических потенциалов.) [c.301]

    Скорость ионного обмена на обычно используемых ионитах велика — равновесие устанавливается за доли минуты, иногда за несколько минут. Ионный обмен — процесс хемосорбционный, состоящий из внешней диффузии сорбируемого иона к поверхности зерна сорбента, затем внутренней его диффузии в зерне к зоне химической реакции и обратной диффузии вытесненного десорбируемого иона внутри зерна и в растворе. Обменные химические реакции внутри ионитов обычно идут со скоростями, значительно большими, чем диффузия ионов, которая при этом и лимитирует процессы ионного обмена. Эти процессы подчиняются закономерностям диффузионной кинетики, причем взаимодействия между растворами электролитов с малой концентрацией поглощаемых ионов и ионитами большой обменной емкости при малой степени сшивки лимитируются чаще всего внешней диффузией, а в концентрированных растворах и при больших степенях сшивки — внутренней диффузией. Скорость диффузии и обмена возрастает с уменьшением размера зерен ионита. [c.307]

    Протон (от греч. protos — первый) — устойчивая элементарная"] (фундаментальная) частица с единичным положительным электрическим зарядом П. в 1863 раза тяжелее электрона протоны образуют вместе с нейтронами ядра всех химических элементов. Число П. в атомном ядре определяет заряд ядра (2) и место соответствующего элемента в периодич. системе Д. И. Менделеева. Наиболее легкое ядро — ядро изотопа водорода (протия), представляет собой один протон. Поскольку атом водорода имеет только один электрон, его ионизация приводит к образованию положительного иона Н+, который в растворах гидратирован (НзО+). Этот ион играет важную роль в кислотно-основных равновесиях (кислота протон + + основание), в ионном обмене, в электролитической диссоциации и др. Протонизация — присоединение протона Н+. [c.109]

    Для понимания причин и факторов, определяющих избирательность различных сорбентов, необходимо физико-химическое рассмотрение процессов, происходящих при ионном обмене. Как известно, количественное изучение ионообменного равновесия привело к различным уравнениям, которые описывают зависимость между концентрацией ионов в растворе и в ионите. Вначале это были полуэмнирические уравнения, типа изотермы адсорбции Фрейндлиха, а также уравнения Лэнгмюра. Позже появились более стройные теории, объясняющие равновесные ионообменные процессы с позиций мембранного равновесия или закона действия масс. [c.407]

    Итак, в фазе любого СХАП могут образовываться различные химические связи, что создает условия для прохождения процессов, описанных выше. Протекание одного из них и Полное подавление других, по существу, частный случай. На практике в конкретной ситуации создаются благоприятные условия для образования различных типов связей и прохождения нескольких процессов. Так, процессу ионного обмена часто сопутствует образование осадков, комплексов с ионогенными группами СХАП или их противоионами, молекулярная сорбция процесс образования комплексов сопроволадается ионным обменом, молекулярной сорбцией и т. д. Некоторые из процессов идут параллельно (ионный обмен и молекулярная сорбция и др.) другие — сопряженно (часто ионный обмен вызывает образование осадков, комплексообразование с ионогенными группами увеличивает степень гидролиза солевых форм СХАП). Тот процесс, константа равновесия которого больше, превалирует над другими. [c.68]

    Химический обмен — метод И. р., основанный на неравномерном распределении изотопа в системе двух веществ при равновесии изотопного обмена. Коэфф. разделения определяется соответствующими константами равновесия. Так же, как ректификация, метод химич. обмена применим к легким изотопам, однако мол. вес соединений не имеет значения для величииы а. Процесс чаще всего проводят в колоннах. Поскольку обмен происходит между различными химич. соединениями, то прямой поток в колонне представлен одним веществом, а возвратный — другим поэтому на конце колонны необходим реактор для обращения потоков, т. е. для химич. превращения одного вещества в другое. В лабораторной практике метод широко применяется для разделения многих легких изотопов. Используется иногда каталитич, изотопный обмен и изотопный ионный обмен. В пром-сти химич. обмен применяется при концентрировании дейтерия ири этом для ликвидации дорогостоящей стадии обращения потоков использован т. н. двухтемпературный вариант изотопного обмена между водой и сероводородом, в к-ром стадия химич. превращения воды в сероводород заменена изотопным обменом между этими же веществами, но при более высокой темп-ре. В произ-ве тяжелой воды применяют также химич. обмен между водой и водородом в сочетании с электролизом, к-рый представляет собой в этом случае стадию обращения потоков (см. Дейтерий). [c.100]

    При реакциях ионного обмена, протекающих за счет разности химических потенциалов в фазе ионита и в растворе электролита, по достижении в системе минимума свободной энергии устанавливается равновесное состояние. В соответствии с теорией мембранного равновесия Доннана [38], противоионы ионита стремятся диффундировать в раствор, что нарушает электронейтральность цони-та и ведет к поглощению эквивалентного количества ионов того же знака заряда из раствора. Процесс перераспределения ионов протекает до установления динамического равновесия [39]. На равновесное распределение ионов между раствором и ионитом значительное влияние оказывают природа последнего, величина сшивки (степень набухаемости), концентрация раствора, природа растворителя, pH среды, свойства обменивающихся ионов и другие факторы. Поэтому при теоретических и экспериментальных исследованиях ионообменных процессов значительные затруднения вызывает учет совокупности всех параметров, влияющих на ионный обмен. [c.16]

    Б. Физическая химия общие вопросы теория строения молекул и химической связи исследования строения и свойств молекул и химической связи кристаллохимия и кристаллография химия твердого тела газы, жидкости, аморфные тела радиохимия, изотопы термодинамика, термохимия, равновесия, физико-химический анализ, фазовые переходы кинетика, горение, взрывы, то-похимия, катализ фотохимия, радиационная химия, газовая электрохимия и химия плазмы, теория фотографического процесса растворы, теория кислот и оснований электрохимия поверхностные явления, адсорбция, хроматография, ионный обмен химия коллоидов, дисперсные системы. [c.71]

    Приведены статьи по химии поверхности и сорбционным свойствам окисленных углеродных адсорбентов, избирательному ионному обмену на них и расчету ионнообменных равновесий, окислительно-восстановительным и каталитическим свойствам активных углей с различной химической природой поверхности и по использованию окисленных углей для глубокой очистки различных веществ, разделения радиоактивных изотопов, аналитического концентрирования микропримесей. [c.112]

    В развитии теории стеклянного электрода и методов измерений с ним весьма существенную роль сыграли исследования советских ученых С, Соколова, В. Пчелина, В. Каргина, Б. Никольского, А. Пасыяского, Авсеевнча и мн. др. суммированные в монографии В. Пчелина (см. указатель литературы). Б. Никольский дал интересную термодинамическую теорию стеклянного электрода (Журн. Физ. Химии 10, 495—523, 1937), согласно которой разность электрических потенциалов между стеклом и раствором обусловлена разностью химических потенциалов ионов водорода или натрия в пограничном слое стекла и в растворе. При установлении равновесия между тонким полимолекулярным слоем стекла у поверхности и раствором, в стекле идет обмен ионов натрия на ионы водорода, который определяется константой обмена ионов К. Теория приводит к уравнению [c.146]

    Низкий температурный коэффициент равновесия ионного обмена показ ,1вает, что теплота реакции очень мала и, вероятно, не превышает 2 кал1моль. Так как, попадая в ионит, ноны остаются понами и происходит только изменение их непосредственного окружения, то при этом процессе не наблюдается образования или раз-])ыва ковалентных химических связей, а поэтому у нас нет оснований ожидать сколько-нибудь значительного влияния температуры, Те> пература будет влиять только на коэффициенты активности ионов, а это влияние очень мало. Однако оно увеличивается с ростом концентрации. Мы можем ожидать значительного температурного влияния только в случае процессов обмена водородного нона с участием ионита, являющегося очень слабой кислотой, и, мо кет быть, также при обменах, в которых участвуют комплексные попы. [c.25]

    Условия отделения и выделения различных катионов и анионов в их разнообразных смесях можно варьировать в широких пределах. Ионный обмен позволяет удалять из раствора нежелательные ионы и электролит, заменять их другими или отделять друг от друга. Когда электролит протекает через колонку, он обменивает свои противоионы на противоионы, содержащиеся в зернах ионита. Поэтому вытекающий из колонки раствор содержит до проскока только противоионы, вытесненные из зерен ионита. Степень отработки ионита зависит от размеров колонки, положения равновесия ионного обмена, химического состава ионита и условий работы колонки. Если ионит селективно поглощает противоионы из раствора, то между зонами обоих сортов противоионов возникает и сохраняется острый фронт, который делается стационарным. Иониты в Н- и ОН-форме могут полностью освободить растворы от содержащихся в них катионов и анионов. Необходимо умело использовать избирательное действие различных ионитов, содержание в них различных функциональных групп и различный характер связи их с противоионами металлов или анионами. Больщое значение имеет применение процессов комплексообразования для разделения смесей ионов. Эти разделения основаны на образовании комплексных соединений металлов с одним комилексообразователем, но различающихся величинами констант нестойкости. Очень эффективно разделение лантанидов и актинидов, основанное на комплексообразовании с анионами органических кислот винной, лимонной, комплексонов различного состава и других. Катионы лантанидов или актинидов таким путем были полностью разделены, в то время как [c.103]

    Этот метод основан на эквивалентном обмене ионов раствора на ионы твердой фазы. В отличие от адсорбции ионный обмен описывается стехиометрическим химическим уравнением, что важно и для ионной хроматографии. Однако четкую грань между адсорбцией и ионным обменом провести трудно, так как на ионообменннках часто наблюдается и физическая адсорбция. Ею нельзя пренебрегать особенно при ионохроматографическом определении органических веществ или их использовании в качестве элюентов.. И все-таки основную роль при ионообменном, а следовательно, и ионохроматографическом разделении веществ играет ионообменное равновесие. [c.11]

    Разные соединения одного и того же элемента имеют различные термодинамические, физико-химические и- гидродинамические параметры (свободные энергии, коэффициенты ионной и молекулярной диффузии). Поэтому процессы массопереноса (растворение, ионный обмен, кристаллизация, диффузионные и конвективно-диффузионные перемещения вещества в растворах), составляющие основу формирования химического состава подземных вод, невозможно правильно интерпретировать и прогнозировать без знания форм переноса элементов. Именно эти формы определяют возможность, геологическую значимость процессов, а также их кинетику. Имеются и другие геохимические вопросы, правильное рещение которых невозможно без знания состояний элементов в подземных водах. Так, при оценке степени насыщения подземных вод карбонатом или сульфатом кальция использование в расчетах суммарных активностей кальция, карбонатов и сульфатов без вычета тех их частей, которые связаны в сложных ионных и молекулярных соединениях, часто приводит к ошибочным выводам о пересыщениях ими подземных вод. Суждение о мнимом пересыщении, подземных вод этими соединениями широко распространено в гидрогеохимической литературе. При образовании устойчивых комплексных соединений происходит смещение равновесий в геохимических процессах (растворении, выщелачивании, осаждении и соосажде-нии, сорбции, ионного обмена, окислении, восстановлении) в сторону водной фазы. При этом чем устойчивее комплексное соединение, тем сильнее эти смещения. Экспериментально установлено, что комплексообразование предохраняет элементы-гидролизаты (Ре, А1, Ве, Си и др.) от полного гидролиза, тормозит образование гидроокисных соединений и удерживает эти элементы в околонейтральных и даже щелочных водах. Геохимическими последствиями этого является расширение кислотно-щелочного диапазона водной миграции гидролизующихся элементов, [c.33]

    Ионный обмен - процесс, следующий за сорбцией возникает в условиях, когда поверхностный слой породы содержит поглощенный комплекс ионов. Ионный обмен обусловливается разницей химических потенциалов компонентов в системе подземная вода -порода. Для ионного обмена характерны обмен катионов, концент-рационность и самопроизвольность протекания до установления равновесия. [c.11]

    Гидролизу могут подвергаться химические соединения различных классов соли, углеводы, белки, эфиры, жиры и т. д. В неорганической химии чаще всего приходится иметь дело с гидролизом солей, т. е. с обменным взаимодействием ионов соли с молекулами воды, в результате которого смещается равновесие электролитнче ской диссоциации воды. [c.265]


Смотреть страницы где упоминается термин Химическое равновесие ионного обмена: [c.720]    [c.451]    [c.100]    [c.569]   
Основы общей химии Том 2 Издание 3 (1973) -- [ c.190 ]




ПОИСК





Смотрите так же термины и статьи:

Ионные равновесия

Ионный обмен

Ионный обмен и иониты

Обмен ионов

Химическая ионная

Химическое равновесие



© 2025 chem21.info Реклама на сайте