Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гадолиний температур

    Методом изотермических сечений изучена растворимость в системах хлорид гадолиния—вода и хлориды ди- и триэтиламинов при 40 и 20°С. Установлено, что диаграммы растворимости исследованных систем соответствуют изотермам обычного эвтонического типа. Равновесными твердыми фазами насыщенных растворов являются безводные солянокислые амины и кристаллогидрат хлорида гадолиния. В исследованном интервале температур солевые компоненты систем между собой продуктов присоединения не образуют. [c.90]

    При температурах 20 и 40°С изучена растворимость твердых фаз в тройных системах хлорид гадолиния — вода—дихлорид гидразина и хлорид гадолиния —вода — дихлорид этилендиамина. [c.95]


    Лантаноиды — тяжелые металлы со средней плотностью 8 минимальная плотность у гадолиния (5,245), а максимальная у лютеция (9,849). Температуры плавления изменяются от 804 (церий) до 1675° С (лютеций). [c.277]

    Общая характеристика лантаноидов и актиноидов. У элементов семейства лантаноидов (редкоземельных) очередные электроны попадают в подуровень 4/ (табл. 36). В подуровне 5d содержится по одному. электрону у Ьа, Сс1, Ьи, у всех остальных 5й-электрон проскакивает в подуровень 4/. У гадолиния и лютеция валентные электроны только 5d 6s их валентность три. У других лантаноидов валентными являются б5 - и часть 4/-электроны (чаще — один). Как правило, их валентность тоже три, но для европия с наполовину заполненным /-подуровнем и для иттербия с целиком заполненным /-подуровнем более характерна валентность два. У них же (Ей и УЬ) радиус атомов более высокий, плотность металла и температура плавления более низкая в сравнении с другими лантаноидами. У церия, тербия и следующих за ними празеодима и диспрозия валентность бывает три и четыре. В последнем случае в валентных связях, кроме бх -электро-нов, участвуют еще два электрона из 4/-подуровня. [c.326]

    Вещества, характеризующиеся очень резко выраженным парамагнетизмом, носят название ферромагнитных. Таких веществ сравнительно немного, причем из химических элементов при обычных условиях к ним относятся только Ре, Со и N1. Для каждого из них существует определенная температура (Ре — 769, Со—1130, N1 — 358°С), выше которой ферромагнетизм теряется. Ниже +18 С ферромагнитен также гадолиний (а при очень низких температурах и некоторые другие лантаниды). [c.446]

    Гадолиний растворяет в твердом состоянии при эвтектической температуре 1113° С и ниже менее 2 ат.% германия. Германий растворяет при эвтектической температуре 850° С и ниже менее 1 ат.% гадолиния. [c.199]

    Кроме того, хлориды самария, европия, гадолиния и тербия имеют низкую температуру плавления и образующийся на повер.хности окисла плав хлорида препятствует дальнейшему хлорированию, а снижение температуры вызывает снижение скорости реакции настолько что хлорирование окислов этих элементов приходится проводить в течение 12—24 часов [16, 17]. [c.128]

    Получение очень низких температур в лабораторных условиях осуществляется последовательным применением различных методов. Испарение жидкого гелия (т. кип. 4,2 К) при быстрой откачке дает температуры вплоть до 0,3 К. Более низкие температуры могут быть достигнуты путем адиабатического размагничивания. Парамагнитная (разд. 16.1) соль, например сульфат гадолиния, охлаждается жидким гелием в присутствии сильного магнитного поля. Соль термически изолируется от окружающей среды, и магнитное поле медленно снимается. В соли происходит обратимый адиабатический процесс, при котором атомные спины [c.73]

    Металлы — железо, кобальт, никель, гадолиний, диспрозий и некоторые из их сплавов и соединений являются ферромагнитными при температуре ниже критической для каждого соединения. Причина ферромагнетизма до объяснения ее квантовой механикой была неизвестна. Вопрос заключается в том, почему электроны на неполностью заполненных оболочках выстраиваются в направлении приложенного поля и почему они сохраняют эту ориентацию даже после снятия магнитного поля Объясняется это тем, что низшим энергетическим состоянием для некоторых твердых тел является состояние, в котором спины электронов параллельны, а не антипараллельны, как, например, для двух электронов в молекуле водорода. Ферромагнетизм возможен только при определенных межатомных расстояниях и определенных радиусах -орбиталей, поэтому он наблюдается лишь для некоторых элементов. Ферромагнитные вещества проявляют гистерезис в магнитных свойствах. Это означает, что магнитный момент зависит от магнитной предыстории образца кривые зависимости магнитного момента от напряженности магнитного поля различны для случаев, когда магнитное поле увеличивается или уменьшается. [c.497]


    В результате исследования кинетики гомомолекулярного обмена кислорода на оксиде гадолиния в интервале температур 78— 500 °С были определены константы скорости реакции при различных температурах  [c.457]

    Все остальные рзэ, а также иттрий и скандий имеют гексагональную структуру решетки, устойчивость которой в области низких температур подтверждена для гадолиния, диспрозия и эрбия рентгеноструктурными исследованиями [6551.  [c.27]

    Материалы теряют ферромагнитные свойства, если энергия теплового движения превышает значение обменной энергии. Это происходит при температуре, которую называют точкой Кюри. Чем больше обменная энергия, характеризуемая обменным интегралом, тем должна быть выше точка Кюри. Точка Кюри для железа равна 753 °С, для кобальта -1127 °С, для никеля - 358 °С, для гадолиния - 16 °С. При снижении значений этого параметра магнитные свойства материалов восстанавливаются. [c.242]

    Среди прочих лантаноидов диспрозий мало чем выделяется. Правда, ему, как и гадолинию, при определенных условиях свойствен ферромагнетизм, но только при низкой температуре. [c.150]

    Свойства. Серебристо-белые, тускнеющие (иногда — окисляющиеся полностью) на воздухе металлы. Лантан разлагает теплую воду с выделением водорода и образованием гидроксида La(OH)j. Плотность металлов составляет от 7 до 10 г/см Гадолиний при температурах ниже 17 °С ферромагнитен. [c.407]

    Особое внимание уделялось изучению каталитического действия редкоземельных элементов. Так, было исследовано влияние окислов Nd, Gd, Y, Dy в реакции o-n-превращения (1) и дейтеро-водородного обмена На + Dg (2). Установлено, что скорость реакции (1) имеет максимум при 240—270° К для неодима, гадолиния и иттрия. Найдена корреляция между величиной ионных радиусов, количеством адсорбированного водорода и изостерическими теплотами адсорбции для всех рассмотренных катализаторов, в то время как константы скорости не коррелируют с этими величинами, но зато меняются симбатно с величиной магнитного момента. Из этого вытекает, что при низких температурах реакция (1) протекает по магнитному механизму, когда скорость ее зависит от структуры 4/-электронной оболочки. В работе [36] авторы сделали вывод о связи скорости каталитической конверсии при низких температурах и строения 4/-оболочки. Активными центрами реакций (1) и (2) являются катионы, расположенные на макродефектах или вблизи анионных вакансий. В области средних температур (140—400° С) реакция (1) также протекает по магнитному механизму скорость реакции (2) очень мала, на 3—5 порядков меньше скорости реакции (1). При температуре >400° К обе реакции протекают с соизмеримой скоростью по одному и тому же механизму, а именно — по химическому, когда каталитическая активность определяется 5s- и 5р-уровнями. Трехокись иттрия и лютеция, обработанные водородом при 550° С, оказались эффективными катализаторами в реакции ор/по-превращения водорода. Реакция протекает по маг- [c.49]

Рис. 26.30. Зависимость ферромагнитного коэффициента Холла для монокристаллов гадолиния от температуры [136] Рис. 26.30. Зависимость ферромагнитного коэффициента Холла для монокристаллов гадолиния от температуры [136]
    Коэффициенты Ki (i = 1, 2,. ..) зависят от температуры и химического состава ферромагнитного материала (рис. 28.20—28.23). На рис. 28.24 показано, как изменяется направление оси легкого намагничивания в кристалле гадолиния с изменением температуры. В интервале от О до 170° К направления легкого намагничивания расположены под углом к гексагональной оси ( конус направлений легкого намагничивания) при этом угол раствора конуса изменяется от 32 до 90°. В области температур 170—230° К направления легкого намагничивания лежат в базисной плоскости ( плоскость направлений легкого намагничивания). В интервале температур 250—290° К конус разрушается и возникает одно направление легкого намагничивания. [c.531]

    Особенностью магнитокристаллической анизотропии гадолиния является также ее сильная зависимость от магнитного поля. На рис. 28.25 приведена зависимость константы магнитной анизотропии Ki гадолиния от напряженности магнитного поля Я при различных температурах Т, °С. [c.531]

    Спеддинг и Даан [851] получили металлические лантан, церий, празеодим, неодим и гадолиний, восстанавливая их хлориды металлическим кальцием в атмосфере арго а, в танталовом тигле при температуре 1000° С при восстановлении гадолиния температуру повышали до 1350° С. Материал тигля имеет большое значение для получения чистых металлов, так как вследствие легкой окисляемости редкоземельные металлы могут поглощать кислород из материала тигля или образовывать с ним сплавы, что и наблюдается, например, при работе с тиглями из окиси бериллия или окиси циркония. Тантал оказался наиболее подходящим материалом, так как он не взаимодействует с расплавом и легко отделяется от образовавшегося слитка. Чистота металлов, получаемых этим способом, превышает 99%. По такому же принципу были получены металлы иттриевой группы, но вместо хлоридов были использованы фториды. [c.330]

    В результате исследования кинетики гомомолекулярного обмена 1 ислорода на оксиде гадолиния в интервале температур 78— 500°С были получены значения константы скорости реакции при раз-личныс темгературах  [c.425]

    Состав эвтонического раствора обогащен хлоридом гадолиния. Значительную часть на диаграмме растворимости занимает поле кристаллизации солянокислого амина. Поле кристаллизации содержание хлорида гадолиния сравнительно невелико. В системе 5H10N X НС1 — Gd lg — Н2О раствримость несколько выше. С увеличением температуры растворимость в обеих системах возрастает. [c.89]

    При температурах 20 и 40 С изучена растворимость твердых фаз в тройных системах из хлорида гадолиния, воды и дихлоридов гидразина, этилен-диамина. Установлено, что обе системы относятся к системам простого эвто-нического типа с эвтоническими растворами, насыщенными безводными ди-хлоридами аминов и кристаллогидратом хлорида гадолиния. [c.186]

    Актуальность отмеченной выше проблемы проверки м(1де лей структур очень часто связана с вопросом правильной интерпретации сведений о фазовых диаграммах. Одним из распространенных вариантов взаимодействия между компо нентами является образование фаз со структурой, не известной ни для одлого из компонентов системы, но существующей у соединений близкого химического состава с другими элементами. Долгое время образование таких фаз опис1лва лось в терминах стабилизации не существующих в чистом виде модификаций, высокотемпературных фаз и т.д. Подобную интерпретацию обычно можно рассматривать как первый шаг к решению проблемы. Более детальное изучение вопроса обычно позволяет выяснить особенности таких стабилизированных фаз. Рентгенография является одним из возможных методов, применяемых для-изучения стабилизированных фаз, причем для получения правильных результатов требуется не только анализ дифракционной картив1ы до стадии определения параметров элементарной ячейки (а иногда субъячейки), но и проверка возможных моделей структуры. В качестве примера можно привести систему СаО - 1/ l2 О У оксида гадолиния в сопредельном интервале температур существует моноклинная модификация со структурой В - S ГП2 Oj. В системе с оксидом кальция монок линная фаза существует вплоть до комнатной температуры. Детальное изучение строения этих фаз показало, что они имеют общую [c.201]


    Важной областью применения лантаноидов является атомная техника. Некоторые лантаноиды (0(3, 5т, Ей) обладают высокими значениями сечения захвата тепловых нейтронов В связи о этим гадолиний, самарий и европий вводят в состав защитных керамических покрытий ядерных реакторов. Эти металлы применяют в качестве регулирующих втержней или в виде рассеянных поглотителей тепловых нейтронов. Они имеют преимущество перед кадмием, так как устойчивы к повышенным температурам. [c.71]

    Применение скандия, РЗЭ и их соединений. Металлический скандий применяется как фильтр нейтронов в ядерной технике и как легирующий металл в черной и цветной металлургии. Добавка 1% иттрия к нержавеющим сталям повышает температуру их окисления до 1200—1300 °С. Кроме того, применительно к магниевым и алюминиевым сплавам иттрий является хорошим упроч-иителем. Лантаноиды, несмотря на сравнительно высокую стоимость, нашли применение в атомной технике, электронике, электро- и радиотехнике, а также в черной и цветной металлургии. В атомной технике применяются лантаноиды с большими сечениями захвата нейтронов (гадолиний, самарий, европий). Церий и мишметалл входят в состав геттеров. Кроме того, церий широко применяется для легирования сталей, чугуна, алюминиевых, магниевых и других сплавов. [c.179]

    Разработаны высокотемпературные термоэлектрические элементы на основе сульфидов самария, церия, работающие при температуре до 900° с высоким к. п. д. [24]. Для этих же целей предложен селенид гадолиния [15]. Известны термистеры на основе ВаТ10з с добавлением ионов 5тЗ% ас1 % Но [9]. [c.89]

    Весьма ценными свойствами металлов являются их пластичность, упругость, прочность. Онн способны под давлением изменять свою форму, не разрушаясь. Это свойство металлов позволяет п.рокатывать их в листы или вытягивать в проволоку. Прочность и пластичность металлов зависят от температуры с повышением температуры прочность понижается, а пластичность возрастает. По степени твердости металлы значительно отличаются друг от друга. Так, калий, натрий — металлы мягкие (их можно резать ножом) хром по твердости близок к алмазу — царапает стекло. Температура плавления и плотность металлов также изменяются в ши- роких интервалах. Самый легкоплавкий металл — ртуть (температура плавления —38,87 °С) самый тугоплавкий— вольфрам (температура плавления 3370 °С). Плотность лития — 590 кг/м , а осмия — 22 480 кг/м Металлы отличаются также своим отношением к магнитным полям. По этому свойству они делятся на три группы ферромагнитные металлы — способные намагничиваться при действии слабых магнитных полей (например, железо, кобальт, никель и гадолиний)  [c.389]

    Кристаллогидрат хлорида р.з.э., полученный растворением окиси в соляной кислоте до pH I—-1,5 и упариванием раствора на водяной бане досуха, загружают в лодочку. Обезвоживание хлоридов р.з.э. производят, пропуская через кварцевую трубу пары четыреххлористого углерода вначале ири температуре 100° в течение 1 часа, затем поднимают температуру до 200—250° и выдерживают продукт при этой температуре еи.ье 1 час, после чего температуру поднимают до 450—500° и выдерживают продукт еще 1—-1,5 часа. Хлориды европия, самария, гадолиния, тербия и гольмия легко окисляются кислородом воздуха до оксихлоридов, поэтому обезвоживание Их кристаллогидратов проводят в атмосфере азота, для чего азот из баллона барботируют чере. баллоичик-испаритель, и насыщенный парами четыреххлористого углерода подают в трубчатую печь. После охлаждения печи до 100° лодочку с хлоридом помещают в сухую камеру, где затем расфасовывают полученный продукт. [c.128]

    Гадолиний и иттрий также не удается получить восстановлением хлоридов кальцием, так как при температуре, достаточной для расплавления получаемых металлов, хлорид кальция сильно вспенивается, что делает невозможным отделение металла от шлака. Проблема разрешается заменой хлоридов на фториды. Фториды менее гигроскопичны, а в результате восстановления образуется стабильный фторидный шлак, что обеспечивает полное разделение металла и шлака. Кроме того, применение танталовых тиглей сильно снизило загрязнение металла мате-риало тигля. Методом восстановления фторидов кальцием можно получить все редкоземельные металлы, кроме самария, европия и иттербия. [c.229]

    Для получения более высоких состг.вов гидридов иавеску дигяд-ридов медленно охлаждают в атмосфере водорода и выдерживают при температуре 230 250° С до окончания поглощения водорода. После этого гидриды охлаждают до комнатной температуры в водороде и извлекают из реактора. Таким образом получают тригидриды самария и гадолиния и дигидрид европия. [c.75]

    А еще у него максимальное по сравнению со всеми другими лантаноидами удельное электрическое сопротивление — примерно вдвое больше, чем у его аналогов. И удельная теплоемкость гадолиния иа 20% (при 25° С) превышает удельную теплоемкость лантана и церия. Наконец, магнитные свойства ставят элемент Д 64 в один ряд с железом, кобальтом и никелем. В обычных условиях, когда лантан и другие лантаноиды парамагнитны, гадолиний — ферромагнетик, причем даже более сильный, чем никель и кобальт. Но железо и кобальт сохраняют ферромагнитность и при температуре порядка 1000 К, никель — 631 К. Гадолиний же теряет это свойство, будучи нагрет всего до 290 К (17° С). [c.146]

    Необычны магнитные свойства и у некоторых соединений гадолиния. Его сульфат п хлорид (гадолиний, кстати, всегда трехвалеитен), размагничиваясь, заметно охлаждаются. Это свойство использовали для получения сверхнизкой температуры. Сначала соль С(12(304)з-8Н20 помещают в магнитное поле и охлаждают до предельно возможной температуры. А затем дают ей размагнититься. При этом запас энергии, которой обладала соль, еще уменьшается, и в конце опыта температура кристаллов отличается от абсолютного нуля всего на одну тысячную градуса. [c.146]

    Данные по превращению циклогексана были использованы для построения прямых в координатах пт — 1/Г (где т — молярный процент дегидрогенизации и Г — абсолютная температура). Определенные из наклона прямых значепия кажущихся энергий активации для окислов неодима, гадолиния и гольмия составляли 45,2, 46,2 и 39,0 ккал/молъ соответственно, т. е. лежали в диапазоне, характерном для окисных катализаторов. В случае других окислов эти значения были больше 50 ккал/молъ, что по всей вероятности связано с осложненным характером превращения циклогексана при высоких температурах. Для исследованного ряда окислов значения кажущихся энергий активации изменялись антибатно эффективному магнитному моменту, отражающему влияние 4/-подоболочки (рис. 3). [c.225]

    В недавно опубликованной работе [37] исследовалась каталитическая активность редкоземельных металлов — иттрия, гадолиния, диспрозия и иттербия в виде напыленных пленок — в отношении реакции изотопного обмена в молекулярном водороде и орто-пара-превращепия водорода при низких температурах —125 и —196° С. Сделана попытка сопоставления каталитической активности редкоземельных элементов с электронным строением. Оказалось, что наибольшую каталитическую активность проявляют металлы, обладающие наименьшим магнитным моментом. [c.50]

    Боридный термокатод — катод на основе металлоподобных соединений типа МеВ в, где Ме — щелочноземельные и редкоземельные металлы или торий. В качестве термокатода наиболее широко применяется гек-саборид лантана, реже — гексабориды иттрия и гадолиния и диборид хрома. Термоэмиссионные катоды из гексаборида лантана работают при температуре 1650° К и обеспечивают получение плотности термоэмиссионных токов до 40—50 а/см в режиме пространственного заряда, а при большой напряженности электрического поля у поверхности катода — до 200 а1см . Высокая механическая прочность и устойчивость таких катодов к ионной бомбардировке позволяет использовать нх в режиме автоэлектронной эмиссии (при напряженностях внешнего электрического поля 10 в/сж значительная часть эмиссионного тока обусловлена туннелированием [c.445]


Смотреть страницы где упоминается термин Гадолиний температур: [c.221]    [c.152]    [c.63]    [c.72]    [c.280]    [c.49]    [c.200]    [c.215]    [c.143]    [c.250]    [c.38]    [c.147]    [c.55]    [c.384]   
Основы общей химии Том 3 (1970) -- [ c.134 ]




ПОИСК





Смотрите так же термины и статьи:

Гадолиний

Гадолинит



© 2025 chem21.info Реклама на сайте