Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород валентность по водороду

    Молекула Н2О относится к точечной группе симметрии 62а, которая имеет четыре неприводимых представления (НП) Ль Ла, В1 и В2. Ниже дана классификация валентных АО атомов кислорода и водорода по этим НП (направление координатных осей [c.204]

    Понятие валентность появилось в начале XIX в. после открытия закона кратных отношений. В это время валентность элементов устанавливалась экспериментально по стехиометрическому составу соединений. В качестве стандарта были выбраны одновалентный водород (валентность по водороду) и двухвалентный кислород (валентность по кислороду). С открытием периодического закона была показана связь валентности с положением элемента в периодической системе. Высшая валентность элемента определяется номером группы периодической системы, в которой он находится. С помощью подобных представлений удалось систематизировать фактический материал в химии, предсказать состав и синтезировать неизвестные соединения. [c.78]


    Таким образом, валентность — это число, которое показывает, сколько грамм-эквивалентов содержится в грамм-атоме элемента. Например, валентность водорода равна 1, кальция и кислорода — 2, алюминия — 3. [c.14]

    Изучая типы соединений элементов с кислородом и водородом, Д. И. Менделеев пришел к выводу, что сумма максимальных значений валентностей элемента по водороду и по кислороду для многих элементов равняется восьми. Объясните физический смысл этого явления. [c.34]

    Кислород двухвалентен, водород одновалентен, следовательно, атом кислорода может присоединить к себе только два атома водорода, третий атом водорода не присоединится. Значит, присоединив два атома водорода, атом кислорода насытил свои валентности. Причем присоединение двух атомов водорода к атому кислорода произойдет таким образом, что образовавшаяся молекула воды будет иметь строго определенную пространственную конфигурацию, т. е. две связи кис- [c.68]

    Если соединение содержит три или более различных элемента, то для составления формулы по валентности необходимо иметь дополнительные данные. Например, для установления формулы азотной кислоты, состоящей из Н, О и Ы, кроме валентности азота, равной пяти в этом соединении (валентности водорода и кислорода равны соответственно 1 и 2), такие данные требуются, так как без этого задача остается неопределенной и допускает различные решения. Зная же, что в молекуле азотной кислоты содержатся только один атом водорода и один атом азота, друг с другом непосредственно не связанные, можно получить вполне определенную формулу. [c.29]

    Структурные формулы строятся из символов элементов и связывающих их черточек, символизирующих ковалентную связь. Строя структурные формулы органических веществ, надо учитывать валентность углерод в органических соединениях четырехвалентен, кислород — двухвалентен, водород и галогены — одновалентны, азот может образовывать либо три, либо четыре ковалентные связи. Построим структурные формулы первых трех простейших углеводородов  [c.220]

    Эквивалентом простого вещества, вступающего в какую-либо реакцию, называют такое его количество (в молях атомов или чаще в граммах), которое приходится на единицу валентности соответствующего элемента при образовании им соединения. (Нетрудно убедиться, что вышеприведенной формулировке равнозначна первоначальная Эквивалентом элемента называется такое его весовое количество, которое соединяется или вытесняет из соединений 1 весовую часть водорода или 8 весовых частей кислорода .) Так, водород в своих соединениях, как правило, одновалентен и его эквивалент равен 1 моль Н, или 1/2 моль Н2, или [c.39]

    Особая роль кислорода в химии. В становлении и развитии классической неорганической химии неоценимая роль принадлежит кислороду. Еще Берцелиус утверждал, что кислород — это та ось, вокруг которой вращается химия. Обусловлено это двумя причинами. Во-первых, чрезвычайно большая распространенность и исключительная реакционноспособность кислорода определяют многообразие форм его соединений. Во-вторых, классическая неорганическая химия в основном — это химия водных растворов. Другими словами, она представляет собой химию самого распространенного и самого главного соединения кислорода — оксида водорода. Поэтому многие основополагающие понятия, такие, как валентность по кислороду, окислительное число, окисление, горение, кислоты и основания, соли и т. д., были сформулированы применительно к кислороду и его важнейшим соединениям. Больше того. До 1961 г. применялась кислородная шкала атомной единицы. массы. [c.312]

    Особенности физических свойств воды обусловлены строением ее молекул и характером межмолекулярных связей. Молекула воды состоит из двух атомов водорода и одного атома кислорода, расположенных под углом относительно друг друга (рис. 8). Расстояние между центрами атомов кислорода и водорода 0,1 нм, валентный угол равен 104,5 °С. [c.27]


    Отдавая при образовании молекулы свой единственный электрон кислороду, атом водорода остается в виде протона. Вследствие отсутствия электронной оболочки он не отталкивается электронными оболочками других атомов, а, наоборот, электростатически притягивается ими, образуя тесную связь. Таким образом, атом водорода как будто имеет другую валентность по отношению к очень отрицательным атомам. [c.39]

    Одной из наиболее интересных разновидностей диполь-дипольного взаимодействия является водородная связь. В обычных условиях валентность водорода равна 1, и он способен обобществлять с другими атомами одну электронную пару, образуя самую обычную ковалентную связь кроме того, атом водорода может присоединять электрон, образуя гидрид-ион Н . Однако, будучи связан с каким-либо сильно электроотрицательным атомом, например с фтором, кислородом или азотом, атом водорода приобретает относительно высокий положительный заряд (естественно, не превышающий единицы ). Поскольку этот заряд сосредоточен на чрезвычайно малом атомном остове (представляющем собой в данном случае просто протон), он может сильно приближаться к какому-нибудь другому атому, несущему на себе небольшой отрицательный заряд. Это вызывает образование довольно сильной диполь-дипольной связи, хотя, конечно, она гораздо слабее нормальной ковалентной связи. Возникающее при образовании водородной связи расположение частиц показано на рис 8.20. [c.142]

    До сих пор рассматривались молекулы, которые можно было принимать за упругие шары. Такие молекулы встречаются в природе очень редко, и при рассмотрении свойств реальных систем, приходится обращаться к другим моделям. Чаще всего химия руководствуется экспериментальными законами валентности. Они, например, утверждают, что обычные валентности водорода, кислорода, азота и углерода равны соответственно 1,2,3 и 4. Изучение стереохимии и оптической активности показывает, что два атома водорода 15 молекуле воды являются совершенно эквивалентными то же можно ска- )ать о трех атомах водорода в аммиаке и о четырех атомах в метане. Эти молекулы симметричны первая является плоской, вторая — пирамидальной, а третья — тетраэдрической. Точное применение законов механики внутриатомным и внутримолекулярным движениям всегда представляет трудную задачу, и практически такое применение очень редко оказывается возможным. Поэтому приходится довольствоваться рассмотрением молекулярных моделей, законы динамики которых лишь приблизительно соответствуют действительным законам поведения молекул. [c.77]

    В молекуле воды ядра водорода и кислорода образуют равнобедренный треугольник, в основании которого находятся два мелких ядра водорода, в вершине — более крупное ядро кислорода. Валентный угол у центрального атома кислорода, образованный связями Н — О — Н, составляет 104°27 (рис. 1.1, <з). Структура электронного облака молекулы схематично показана на рис. 1.1, 6. Две внешние пары электронов, образующих связи О — Н, смещены к атому кислорода, поэтому вблизи ядер атомов водорода создается избыток положительного заряда. Две не поделенные пары электронов также смещены относительно ядра атома кислорода, и их отрицательные заряды остаются частично не скомпенсированными. Условно можно представить, что лепестки электронного облака направлены к вершинам частично искаженного тетраэдра, что иллюстрируется рис. 1.1, в. [c.12]

    Из курса общей химии нам известно, что способность атомов соединяться друг с другом определяется валентностью. Валентность водорода равна 1, кислорода — 2, углерода — 4 (эти элементы почти всегда проявляют указанные валентности). Валентность хлора обычно равна 1, хотя в некоторых соединениях может меняться. Простейший способ изобразить свойства нашего вещества в соответствии с валентностями составляющих его атомов — написать его структурную формулу  [c.140]

    Энергия адсорбции часто довольно значительна, и адсорбированный слой трудно удалить в таких случаях адсорбированные молекулы, по-видимому, соединены с атомами поверхностного слоя связями типа валентных. Кислород и водород, адсорбированные на металлах, могут, например, давать в действительности поверхностные окислы и гидриды. В других случаях энергия адсорбции гораздо меньше, и это относится, в частности, к адсорбции [c.294]

    Валентность. Одним из основных химическ> х свойств элементов является валентность. Под валентностью подразумевают свойство атома одного элемента присоединять к себе один или несколько атомов другого элемента. Первоначально различали валентность элементов по водороду (валентность водорода принимали за 1) и по кислороду (валентность его равна 2). В связи с развитием представлений о строении атома валентность стали подразделять на положительную и отрицательную. [c.93]

    Рассмотрены методы определения коррозии металлов и их сплавов в расплавленных солях весовой, аналитический, стационарных потенциалов и поляризационных кривых, а также коррозия металлов под воздействием газов (кислорода, хлористого водорода), растворенных в расплавленных солях. Обсуждаются процессы бестокового переноса металла катионами низших валентностей. Значительное внимание уделено термодинамике и кинетике коррозионных процессов. Приводятся данные по пассивации металлов и защите их от коррозии при высоких температура в расплавах. [c.213]

    В водном растворе имеются и альдегидная, и циклическая формы глюкозы, причем эти изомеры находятся в динамическом (подвижном) равновесии. Если равновесие нарушается, то одна форма глюкозы может переходить в другую. Переход альдегидной формы глюкозы в циклическую осуществляется следующим образом разрывается двойная связь между кислородом и первым атомом углерода, к кислороду присоединяется водород от гидроксила, находящегося у пятого атома углерода, а первый атом углерода благодаря освободившейся валентности соединяется с кислородом пятого атома углерода, образуя замкнутое кольцо. [c.173]

    Отметим, что способность к насыщению представляет собой весьма характерную черту атомов и проявляемых ими химических сил, спадающих гораздо быстрее, чем по закону обратной пропорциональности квадрату расстояния, а потому действующих на очень коротких расстояниях — порядка 0,5—3 А химические силы легко насыщаются при образовании определенного и притом небольшого и специфического для каждого элемента числа связей, равного так называемой валентности атома. Обычная валентность водорода равна 1, для кислорода она равна 2, у азота — 3, углерода — 4. [c.27]

    Элементы реагируют друг с другом в количествах, пропорциональных их эквивалентам. Следовательно, в молекуле, образованной двумя элементами, произведение числа атомов на валентность одного элемента должно быть равно произведению числа атомов на валентность другого элемента например, А12 0" (здесь валентность алюминия 3, кислорода — 2, а число атомов соответственно — 2 и 3 произведение равно 6 для обоих элементов). Так как валентность водорода равна 1, то число атомов водорода в соединении может, очевидно, характеризовать валентность другого элемента. Так, в соединении HJ йод будет одновалентен, в НзЗ сера двухвалентна, в ЫНд азот трехвалентен и т. д. Отсюда можно дать такое практическое определение валентности  [c.14]


    Решение. Эквивалентом элементов называется количество, соединяющееся с 8 массовыми частями кислорода или 1,0078 массовой частью водорода или замещающее те же количества кислорода или водорода в их соединениях. Эквивалент Э элемента (простого вещества) рассчитывают по формуле Э = А В, где А — относительная атомная масса элемента, В — валентность элемента. Эквивалент серы при получении SOa 5+02 = SOj равен Эд = 32 4 = 8. Эквивалентсеры при образовании HjS Н. -f S = H2S равен 5 =32 2 = 16. [c.388]

    В левую часть уравнения фазы восстановления введено 8 водородных ионов, которые свяжут 4 атома кислорода, освобождающиеся из иона Мп04 в результате восстановления марганца из +7-валентного состояния в +2-валентное. В правой части того же уравнения указаны 4 молекулы воды, получающиеся в результате соединения указанных количеств ионов кислорода и водорода. [c.131]

    СОг (рис. 2, 6). При расстоянии между центрами кислорода и водорода в 0,99 A валентный угол равен 105°, т. е. близок к тетраэдрическому. Связь И—О — высокополярна. Положительные заряды в молекуле воды (рис. 3) экранированы одной парой электронов с круговой орбитой, двумя парами электронов с вглтянутыми эллиптическими орбитами, связывающими протоны с кислородом, и двумя уединенными парами, которые создают повышенную электронную плотность у кислорода. Такое строение молекулы обеспечивает нейтрализацию положительных зарядов ядра кислорода, в то время как протоны экранированы не полностью. Преимущест- [c.23]

    В большинстве неорганических соединений сущест вует ионная (или условно принимаемая за ионную) связь между элементами, основанная на притяжении разноименных электрических зарядов. Одноименно заряженные элементарные ионы не могут быть связаны между собой. Все валентности должны быть полностью взаимо насы-ш,еиы. Каждая единица валентной связи обозначается черточкой между символами связанных между собой ионов. Структурные формулы являются в некоторых отношениях условными и, как правило, не отражают реальной геометрии молекул. Например, структурная формула воды обычно пин1ется Н —О—Н, но современная наука нашла угол между направлениями валентных связей между ионами кислорода и водорода (ок. 105 ), обусловленный полярностью молекул воды. Поэтому графическое начертание структурных формул может быть различным, но должно удовлетворять требованиям симметрии и удобства, а также основному требованию—чередованию положительных и отрицательных Зарядов. Приводим примеры составления структурных формул окислов, оснований, кислот и солей. [c.41]

    Впервые понятие о валентности было введено в химию английским химиком Франклендом в 1853 г. Под валентностью, или атомностью, данного элемента он понимал число атомов другого соединяющегося с ним элемента. Если принять валентность водорода равной единице, валентности других элементов определяются как число атомов водорода, соединяющееся с одним атомом рассматриваемого элемента. Франклендом была обнаружена трехва-лентность азота, фосфора, мышьяка и четырехвалентность (вместе с А. Кольбе) углерода. В дальнейшем представления о валентности сыграли исключительно важную роль в теории химического строения Бутлерова и создании Периодической системы химических элементов Менделеева. Это свойство зависит от состояния атомов рассматриваемого элемента, природы партнера, с которым реагирует данный элемент, условий взаимодействия. Так, углерод с одним и тем же партнером — кислородом в зависимости от условии взаимодействия образует СО2 и СО, в которых состояния атомов углерода различны. На основе валентности элементов легко определить формульный состав химического соединения. Поэтому величину валентности часто называют стехиометрической валентностью. [c.74]

    Теперь проверяем число атомов каждого элемента в обеих частях уравнения и расставляем соответствующие коэффициенты (начинать проверку целесообразно с элементов, изменяющих в процессе реакции свою валентность водород и особенно кислород, если они не входят в уравнение в свободном состоянии, следует обычно проверять последними). Уравняв при помощи коэффициентов число атомов С1 и Р в обеих частях, приходим к следующему вырахсеиню  [c.209]

    Если в молекуле содержится больщее число атомов кислорода, чем водорода, то избыточные атомы кислорода соединяются непосредственно с центральным атомом, который расходует при этом две единицы валентности на каждый атом кислорода. Так, графические формулы НЫОг, Н2504 и Н3РО4 имеют вид  [c.31]

    Гетерогенное окисление SOj на поверхности твердых аэрозолей. Молекулы SO2 активно адсорбируются на развитой поверхности атмосферных аэрозолей. Особо отмечают высокую сорбционную емкость по отношению к диоксиду серы летучей золы и сажи. Считается, что аэрозоли адсорбируют также молекулы и радикалы окисляющих агентов. Что касается последних, то более вероятна не сорбция, которая должна сопровождаться гибелью радикалов, а фотостимулированное генерирование на самой поверхности частиц. Все они содержат полупроводниковые материалы с примесями в кристаллической решетке, обеспечивающими появление фотоэлектронов при поглощении света с энергией, меньшей необходимой для перехода электронов из валентной зоны в зону проводимости (см. разд. 4.6). Адсорбция на возникающих активных центрах молекул кислорода, пероксида водорода, а также фотокаталитическое разложение адсорбированной воды должны приводить к появлению радикалов О, НО, HOa, инициирующих окисление восстановленных компонентов. [c.207]

    Многочисленные попытки построить на классической основе приемлемую модель молекулы воды оказались несостоятельными. В частности, необходимо было согласовать между собой следующие данные валентный угол (105°), расстояние между ядрами кислорода и водорода (0,958 А), дипольный момент (1,834-10 эл. ст. ед.), поляризуемость (1,444-10 сж ) и энергию полно11 диссоциации на атомы (218,8 ккал/молъ). Классическая теория считала молекулу плоской, исключая возможность расиоложения электронов вне плоскостп нахождения ядер. [c.425]

    В 1852 г. англичанин Э. Франкленд ввел фундаментальное для всей химической науки понятие валентности, т. е. способности атома соединяться с определенным количеством атомов других элементов. Приняв валентность водорода за единицу, удалось определить валентность всех известных элементов. При этом оказалось, что некоторые элементы (щелочные и щелочно-земельные металлы, водород, кислород, фтор) всегда проявляют постоянную валентность, в то время как другие (марганец, сера, олово, железо) проявляют различную валентность в зависимости от атомов-партнеров. [c.195]

    Впервые это понятие высказал английский химик Фран анд (1825—1899) в 1852г. За единицу валенйюсти была принята валентность атома водорода. Например, в ряду соединений водорода НО, HjO, NH3, СН4 валентность по водороду для хлора—1, для кислорода—2, для азота—3, для углерода—4. Можно определить валентность и по кислороду. Например, в ряду соединений кислорода N2O, СаО, SiOj, SO3 валентность по кислороду для азота—1, для кальция—2, для кремния—4, для серы—6. У большинства элементов валентность по кислороду и водороду различна. Например, у серы по водороду—2, по кислороду—6 (H2S и SO3). Охарактеризовать валентность одним числом, как правило, нельзя. [c.16]

    Они указывают, что кислород азотной кислоты, связанный с азотом двумя валентностями, должен иметь гораздо больше свободной химической энергии, чем частично гидрогенизированный кислород гидроксила, а также большее химическое сродство к водороду и поэтому легче может оказать то действие, которое необходимо, чтобы отделить в бензольной молекуле водород от углерода. Доминирую-1ЦИМИ движущими силами в азотной кислоте является химический потенциал кислорода для водорода и химический потенциал азота для арила. С этой точки зрения нитрация бензола протекает следую-1ЦИМ образом  [c.55]

    Термин валентность был введен в химию в 1853 г. английским химиком-орга-ником Франклендом для обоснования количественных соотношений атомов элементов в химических соединениях. Развитие учения о валентности в большой степени связано с открытием Д. И. Менделеевым Периодического закона (1869 г.). Им была установлена связь между валентностью элемента и его положением в Периодической системе, введено понятие о переменной валентности элементов в их соединениях с кислородом и водородом (см. 5.4), Учение о строении атомов и молекул способствовало разработке электронной теории валентности. [c.155]

    Перенос электронов от восстановителя к окислителю может происходить и не в такой явной форме, как в реакции (VI. 1), и не сопровождаться изменением формальной валентности всех участников процесса. Так, превращение этанола в ацетальдегид СНзСН20Н->СНзСН0 не связано с изменением валентного состояния углерода, кислорода или водорода, образующих этанол и ацетальдегид. Это превращение происходит, однако, за счет отрыва двух атомов водорода от этанола, что условно можно представить как одновременное отщепление двух протонов и двух электронов  [c.121]

    Важность требования структурного соответствия зависит от типа переходного состояния. Например, соблюдение этого принципа очень существенно для мультиплетных комплексов, в которых индексные группы должны уложиться на нескольких атомах катализатора, чтобы без значительного нарушения валентных углов могла произойти перестройка указанного комплекса в продукты реакции. Меньшее значение имеет структурное соответствие в случае окислительно-восстановительных реакций, катализируемых металлами или полупроводниками. Здесь, согласно электронным 1 редставлениям, реакция протекает так, что взаимодействие между окисляющейся и восстанавливающейся молекулами может происходить и на расстоянии, через электронную систему катализатора. Например, при взаимодействии кислорода и водорода на платине переход электронов от водорода в кристаллическую решетку катализатора компенсируется соответствующим втягиванием электронов из решетки, молекулой кислорода. Этот процесс не требует каких-то специальных условий структурного соответствия. [c.162]

    Если каждая связь, идущая от алюминия к кислороду, была бы нормальной ковалентной связью, то атом алюминия должен был бы иметь шесть валентных электронов, кроме десяти электронов его внутренне11 оболочки, и его электрический заряд был,бы равен —3. Однако электроотрицательность алюминия составляет 1,5, а электроотрицательность кислорода равна 3,5, следовательно, разность электроотрицательностей равна 2,0, что соответствует 54% ионного характера связи (табл. 16). Исходя из этого, каждая из шести связей на 46% ковалентна и обеспечивает атому алюминия 0,46 валентного электрона. Всего в расчете на шесть связей это составит 2,76, а вместе с десятью внутренними электронами дает 12,76 если вычесть эту величину из заряда ядра 4-13, то получим, что атом алюминия будет иметь суммарный заряд, равный -Ь0,24. Каждый атом кислорода в данном случае имеет заряд -+-0,46 однако связи между кислородом и водородом (разность электроотрицательности 1,4) имеют 32% ионного характера (табл. 16), а это значит, что атомам кислорода остается заряд —0,18 и заряд каждого атома водорода будет равен -+-0,32. [c.195]

    Сопоставление атомного состава разнообразнейших молекул привело к выводу о том, что в самой природе атомов заложено некоторое свойство, определяющее строгие количественные закономерности в построении молекул из атомов и нашедшее свое конкретное выражение в законе Пруста. Лрирода этого свойства была неясна, но оно получило название валентности (от латинского valentia — сила, могущество, иногда — прочность). Термин предложен Э. Франк-ландом (1853). В качестве основы для количественного выражения избрали водород и кислород валентность первого была принята равной единице, а второго — двум. Основываясь на этом, можно по химической формуле вещества вычислять валентность и других элементов. Например, валентность углерода в метане СН4 равна четырем, а серы в SO3 —шести. Валентность элемента, вычисленная на основе химической форму- [c.118]

    Химические свойства углерода. Углерод—металлоид. Порядковый номер его 6. Атом углерода содержит четыре валентных электрона, и поэтому углерод в соединениях 4-валентен. При обыкновенной температуре углерод химически мало активен. С повышением температуры активность его значительно возрастает. При высокой температуре он образует ряд соединений с металлами, кислородом, серой, водородом и другими элементами. [c.270]

    Анодные кривые для титана и хрома одинаковы. На кривой можно отметить следующие характерные точки — стационарный потенциал, внешний ток равен нулю, V — потенциал начала пассивации соответствует максимальному току анодного растворения металла. При потенциалах более положительных, чем потенциаоЧ начала пассивации, скорость анодного растворения металла уменьшается —потенциал полной пассивации, при котором устанавливается минимальный анодный ток. При потенциалах, более положительных, чем потенциал полной пассивации, металл находится в пассивном состоянии, поддерживаемом внешней анодной поляризацией. Различие в анодном поведении титана и хрома состоит в следующем при высоких положительных потенциалах пассивное состояние титана не нарушается, в то время как у хрома наступает состояние перепассивации [10—12], в котором он начинает растворяться в виде шестивалентных ионов. Анодный ток, соответствующий началу пассивации, для хрома значительно больший, чем для титана. Потенциал полной пассивации у хрома более отрицательный, чем у титана. Перенапряжение водорода на хроме несколько более низкое, чем на титане. Стационарный потенциал молибдена в 40%-ной H SO равен +0,3 в, т. е. значительно более положителен, чем потенциал полной пассивации титана в этой среде. Поэтому в области потенциалов, где титан активно анодно растворяется на молибдене, протекают катодные процессы. Анодное растворение молибдена наблюдается только при значительном смещении его потенциалов в положительную сторону. Сопоставлением весовых потерь и количества пропущенного электричества установлено как в наших опытах, так и в работе [13], что растворение молибдена происходит в виде шестивалентных ионов. Молибден является коррозионностойким металлом в серной кислоте. Поэтому растворение молибдена в виде ионов высшей валентности при анодной поляризации можно трактовать как состояние перепассивации. Перенапряжение водорода на молибдене значительно более низкое, чем на титане. Палладий в серной кислоте анодно не растворяется. Рост анодного тока при высоких положительных потенциалах соответствует реакции выделения кислорода. Перенапряжение водорода на палладии значительно ниже, чем на титане. [c.179]


Смотреть страницы где упоминается термин Кислород валентность по водороду: [c.15]    [c.11]    [c.52]    [c.76]    [c.25]    [c.119]    [c.112]    [c.45]   
Основы общей химии Том 3 (1970) -- [ c.270 ]




ПОИСК





Смотрите так же термины и статьи:

БГК и кислорода и водорода



© 2025 chem21.info Реклама на сайте