Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт атом, электронное строение

    Строение электронных уровней атомов этих элементов характеризуется почти полной достройкой -подуровня предпоследнего уровня шесть —у железа, семь — у кобальта и восемь — у никеля. Заполнение -подуровня у атомов этих элементов сказывается на уменьшении окислительного числа, поскольку на /-подуровне содержится меньшее число непарных электронов (см. Курс химии, ч. 1. Общетеоретическая, гл. 11, стр. 86). Поэтому если марганцу свойственно еще окислительное число +7. то атом железа может отдавать не более 6 электронов и, следовательно, его окислительное число не может быть больше +6. Окислительное число кобальта не можег быть больше +5, а никеля -1-4. Таким образом, у атомов этих элементов уже нельзя считать все электроны незаполненных уровней валентными. Одновременно с повышением устойчивости почти зг(полненного /-подуровня снижается склонность этих элементов к металлообразным соединениям с электронной проводимостью. [c.126]


    Строение электронных уровней атомов железа, кобальта и никеля характеризуется почти полной достройкой -подуровня предпоследнего электронного уровня шесть электронов — у железа, семь—у кобальта и восемь — у никеля. Заполнение -подуровня у атомов этих элементов сказывается на уменьшении окислительного числа, поскольку на -подуровне содержится меньшее число непарных электронов. Поэтому если марганцу свойственна еще степень окисления 4-7, то атом железа может отдавать не более шести электронов и, следовательно, его степень окисления не может быть больше 4-6. Окислительное число кобальта не может быть больше 4-5, а никеля 4-4, Таким образом, у атомов этих элементов нельзя считать все электроны незаполненных уровней валентными. Одновременно с повышением устойчивости почти заполненного -подуровня снижается склонность этих элементов к образованию металлоподобных соединений с электронной проводимостью. Электрической проводимостью такого типа обладают только силиды этих металлов. [c.297]

    В атомах, следующих за скандием элементов, продолжается заполнение электронами Зг/-уровпей. К этим элементам относятся титан, у которого два Зй-электрона, ванадий, имеющий Зс -электрона, т. е. V(l) (2) (3s) (Зр) (3d) (4s) . Строение атома следующего элемента — хрома— имеет вид Сг(1) (2) (3s) (3p) (3ii) (4s) так как оказывается, что одному s-электрону выгоднее возвратиться на 3 -уровень. Атом марганца имеет также пять Зс/-электронов и два 4s. В атоме железа шесть 3d-электронов Fe(l) (2) (3s)2(3p) (3d) (4s)2, в атоме кобальта — семь З -электронов и в никеле — восемь. Общее количество электронов, которое может поместиться на -оболочке, равно 10 [2(2-2+1)]. Заполнение Зс -уровня или оболочки завершается в атоме меди (2=29) Си(1) [c.317]

    При образовании стабильных карбонилов металлов они приобретают электронную оболочку благородного газа, для чего требуется 12 электронов для металлов VI группы, 11 для металлов VII группы и 10 для металлов VIII группы. Поэтому карбонилы Ш и Мо взаимодействуют с 12 я-электронами шести групп СО и образуют октаэдрические молекулы [46]. Карбонил Ке присоединяет 5 групп СО (10 электронов) и образует двуядерный карбонил за счет связи Не—Ке. Молекулу этого карбонила можно построить из двух октаэдров, в каждом из которых в центральном положении находится один атом металла, пять вершин заняты группами СО, а шестая — вторым атомом металла. Молекула карбонила железа с пятью группами СО имеет строение тетрагональной пирамиды. Но известно, что пять эквивалентных гибриди-зованных связей не образуется, юэтому одна из связей Ре—С ослаблена, что подтверждается измерениями дипольного момента. В карбониле кобальта также одна из связей (Со—Со) отлична от других (Со—С). [c.110]

    В настоящее время наблюдается мощный интеллектуальный подъем в неорганической химии, который сильнее всего затронул те ее области, которые лежат на стыке с соседними дисциплинами химию металлоорганических и бионеорганических соединений, химию твердого тела, биогеохимию и др. Возрастает, в частности, уверенность ученых в том, что неорганические элементы играют важную роль в живых системах. Живые существа вовсе не являются чисто органическими. Они весьма чувствительны к ионам металлов почти всей Периодической системы Д.И. Менделеева. Некоторые ионы играют важнейшую роль в таких жизненно важных процессах, как связывание и транспорт кислорода (железо в гемоглобине), поглощение и конверсия солнечной энергии (магний в хлорофилле, марганец в фотосистеме II, железо в ферродоксине, медь во фта-лоцианине), передача электрических импульсов между клетками (кальций, калий в нервных клетках), мышечное сокращение (кальций), ферментативный катализ (кобальт в витамине В12). Это привело к взрыву творческой активности ученых в области неорганической химии биосистем. Мы начинаем изучать строение ближайшего и дальнего окружения атомов металлов в биосистемах и учимся понимать, как это окружение позволяет атому металла с такой высокой чувствительностью реагировать на изменение pH, давление кислорода, присутствие доноров или акцепторов электронов. [c.158]


    При рассмотрепии кобальта с порядковым числом 27 становится очевидным, что образование, подобное строению благородного газа, в этом случае маловероятно, так как трудно предположить, чтобы этот металл при соединении только лишь с окисыо углерода был насыщенным в своей внешней оболочке. Оп обязательно будет иметь слишком мало пли слишком много электронов. Поэтому молекула карбонила кобальта содержит не один атом металла, а представляет дикобальтоктокарбопил — С02 (СО)в, состоящий [c.700]

    Структура карбонила кобальта и механизм оксореакции были предметом ряда исследований. Металлический кобальт обладает-27 электронами, которые распределены по электронным орбитам следующим образом Is 2s 2р 3s Зр Sd 4s . Дикобальтоктакарбонилу приписывается структура, согласно которой между двумя атомами кобальта существует одна простая связь и две. мостиковые связи через СО-группы к каждому из атомов кобальта прикреплено по 3 СО-группы. Таким 06pas0iM, при образовании ковалентных связей каждый атом кобальта получает-в совместное обладание 8 электронов от окружающих его молекул окиси углерода и еще один дополнительный электрон от-другого атома кобальта. Следовательно, электронная оболочка кобальта вместо 27 первоначальных электронов имеет 36 электронов, т. е. она приобретает электронную структуру благородного газа криптона. Согласно этому представлению, атом кобальта в карбониле кобальта будет обладать внещней электронной структурой следующего строения 3d ° 4s 4р . Было отмечено, что приобретение кобальтом структуры благородного газа возможно также в результате реакции между дикобальтоктакарбонилом и водородом с образованием гидрокарбонила кобальта [c.207]

    С точки зрения электронной теории соединение иона Со" с ЫНз происходит по той причине, что ион Со+ может образовать устойчивую внешнюю оболочку из 12 электронов. Агом Со (2, 8, 14, 3) превращается в ион Со+++, отдавая 3 электрона и получая, следовательно, строение (2, 8, 14). Приобретая 12 дополнительных электронов (по два от каждой молекулы ЫНз), ион кобальта в комплексе будет иметь строение (2, 8, 14, 12) сумма его электронов равна 36. Это же число электронов имеет атом инертного газа криптона. Рассматривая формулы некоторых комплексов, найдем, что сумма планетарных электронов центрального атом или та же, что и у ближайшего инертного газа, или приблизительно равна ей. Однако во многих случаях при одном и том же числе электронов расположение их различно. Так, в атоме криптона распределение электронов по оболочкам (2, 8, 18, 8), а ион Со+++ в кобальтиаммине имеет, вероятно, группировку электронов (2, 8, 14, 12). [c.33]

    В литературе высказывалось мнение, что истинные карбонилы образуют лишь некоторые элементы (никель, железо, кобальт, рений, хром, молибден, вольфрам, часть платиновых металлов). При этом предполагалось наличие у карбонилов так называемых типич1ных карбонильных овойств. К их числу относили высокую летучесть, растворимость в индиферентных органичеоких растворителях, термическую диссоциацию на металл и окись углерода, комплексное строение. Ряд исследователей считает, что летучие карбонилы могут образовывать только элементы с 5-валентными электронами. Но карбонил углерода обладает всеми типичными карбонильными свойствами. Он летуч, разлагается на углерод и окись углерода, растворяется только в органических растворителях, имеет координационные связи (комплексное строение), и в то же время его центральный атом обладает -5- и р- валентными электронами. [c.12]

    Многие карбонилы металлов и близкие им по строению вещества являются многоядерными. Типичным примером может служить дикобальт-гексакарбонилдифенилацетилен, структура которого, установленная методом дифракции рентгеновских лучей, показана на рис. 19.6. Тройная связь углерод — углерод заменена на одинарную углерод-углеродную связь и на четыре одинарные связи углерод — кобальт. Каждый атом кобальта образует одинарную связь с другим атомом кобальта, две одинарные связи с ацетиленовыми атомами углерода и двойную связь с каждой из присоединенных к нему карбонильных групп таким образом, для образования связей оказываются использованными все девять внешних электронов и девять внешних орбиталей. В некоторых многоядерных карбонильных комплексах имеются мостпковые карбонильные группы, в которых атом углерода карбонильной группы, помимо двойной связи с атомом кислорода, образует и одинарные связи с двумя атомами металла. [c.594]

    Известно, что при замещении у тетраэдрического углерода происходит количественное стереохимическое обращение независимо от деталей строения системы. Оказывается, замещение 5дг2 у октаэдрического кобальта менее стереоспецифично. Но мы находим, что в зависимости от ориентирующего эффекта уже присутствующих групп в больщой и часто преобладающей степени происходит перемещение по ребру . Ориентирующее влияние нитрогруппы весьма отличается от других групп, а несколько пониженные скорости указывают, что она оказывает не активирующее, а слабое избирательное замедляющее действие. По-вндимому, это можно понять [6с]. Так как нитрогрупна является уникальной среди перечисленных ориентирующих групп по способности ее структуры посредством сопряжения втягивать неспаренные электроны (а их в Зс(-оболочке кобальта имеется шесть), то кажется правдоподобным, что перемещение этой оболочки по направлению к нитрогруппе и частично внутрь ее избирательно подвергает другую сторону атома кобальта атаке анионным реагентом. Положительный заряд, наведснный таки.м образом на атом кобальта, будет препятствовать отделению уходящего хлорид-иона. Так как в механизме S v2, описанном нами для замещения анионами, отделение уходящего аниона является существенной частью процесса, определяющего скорость, то не удивительно, что комплексы с нитрогруппой реагируют несколько медленнее. [c.123]

    ПЛОСКИЙ, атом металла подчиняется правилу 18 электронов. Однако аналогичное соединение кобальта 4.186 подчиняется этому правилу, толЬко если предположить существование связи металл — металл. Далее, молекула должна, быть парамагнитной, если бы не происходило спаривания спинов в результате образования связи металл — металл или по какому-либо другому механизму. Из структуры 4.816 видно, что длина связи Со—Со равна 2,56 А (0,256 нм) и молекула не имеет центра симметрии. Различия в строении диамагнитных соединений 4.18а и 4.186 говорят о том, что в последнем случае спаривание спинов происходит вследствие образования связи Со—Со возможно, эта связь изогнута, как показано на схеме [207а] [c.172]

    Для изоэлектронной СоКО(СО)з молекулы гидрида тетракарбонил-кобальта НСо(СО)4 можно предполагать, что атом водорода координирован с атомом металла, дополняя его валентную конфигурацию до 18-электронной, однако электронографическим исследованием обнаружено [94] тетраэдрическое расположение лигандов вокруг атома Со. Это обстоятельство, как и укорочение одной из связей Со—С (1,75 0,08 А) по сравнению с тремя остальными (1,83 0,02 А) (длины связей С—О совпадают и имеют среднюю величину 1,15 0,05 А), позволило предположить [94], что атом водорода связан не с атомом металла, а с карбонильной группой, образуя лиганд СОН, который и располагается на более коротком расстоянии от атома кобальта, так как вкладывает в связь три электрона (по аналогии с NO-гpyп-пой). Однако последующее ИК-спектральное исследование Со(СО)4Н указало [7] на присутствие гидридного атома водорода и тригонально-бипирамидальное строение молекулы. [c.204]



Смотреть страницы где упоминается термин Кобальт атом, электронное строение: [c.207]    [c.161]    [c.260]    [c.260]    [c.407]    [c.235]    [c.235]    [c.264]    [c.105]    [c.23]   
Основы общей химии Том 3 (1970) -- [ c.120 ]




ПОИСК





Смотрите так же термины и статьи:

Атомов строение

Электрон в атомах

Электронное строение

Электронное строение атомов

электронами электронное строение



© 2025 chem21.info Реклама на сайте