Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексные соединения Комплексы ванадия

    Абсолютное большинство исследователей склоняется к тому, что порфирины, содержащие металлы, представляют собой относительно стойкие соединения, которые во время перегонки отгоняются вместе с дистиллятом, не разрушаясь. Так, по данным [196], около 10—15% никеля и ванадия в нефтях представлено летучими соединениями. По данным [197], летучих соединений никеля в исследованных нефтях было 17—65% от общего их содержания, а-ванадия 5—33%. В работе приведены данные по давлениям насыщенных паров комплексов ванадия и никеля. Показано, что давление насыщенных паров углеводородов в точке кипения и насыщенных паров металлических комплексов укладывается в сравнительно узкие пределы. О способности перегоняться группы комплексных соединений, сопутствующих в основном асфальтосмолистым веществам, нет данных. Однако во многих работах указывается, что эти соединения заносятся в дистиллят в виде капелек жидкости из-за нечеткости фракционирования. [c.139]


    Ионно-координационная полимеризация происходит тогда, когда между мономерами и активным центром возникает координационный комплекс. Структура мономера и тип катализатора оказывают решающее действие как на процесс комплексообразования, так и на стереорегулярность полимера. В качестве катализаторов чаще всего применяют комплексные соединения, так называемые катализаторы Циглера - Натта. Эти катализаторы образуются из алкилов металлов переменной валентности и галогенидов металлов. Катализаторами могут являться также я-аллильные комплексы переходных металлов и оксидно-металлические катализаторы. Из катализаторов Циглера - Натта в производстве обычно используют комплексы алюминий-алкилов и галогенпроизводные титана и ванадия. Такие катализаторы используются для полимеризации неполярных алкенов (этилен, пропилен и др.) и диенов (бутадиен, изопрен и их производные). [c.35]

    Оптимальной кислотностью образования комплексного соединения является 1—2 М по серной кис-ло те. Окрашенные ионы Ре (П1) при их высоких содержаниях мешают определению титана. Для устранения влияния железа применяют фосфорную кислоту, которая связывает железо в бесцветный комплекс [Ре(Р04)2 Фосфорная кислота ослабляет окраску также и комплексного соединения титана в связи с образованием бесцветного комплексного аниона, поэтому кислоту вводят в стандартные растворы. К другим элементам, мешающим определению титана окраской собственных ионов или образующим с пероксидом водорода окрашенные соединения, относятся никель (П), хром (III), ванадий (V), молибден (VI), ниобий (V). [c.121]

    Ванадий и молибден в особых условиях также образуют с перекисью водорода окрашенные комплексные соединения. Интенсивность окраски ванадиевого комплекса сравнима с интенсивностью окраски титанового комплекса, но окраска подобных соединений молибдена слабее. Мешают анализу окрашенные соли железа, хрома и никеля. Метод применяется для анализа промышленных сортов титана в этих материалах ни один из элементов, мешающих определению, не присутствует в количествах, которые могли бы оказать заметное влияние на результаты анализа. [c.98]

    Недавно был разработан остроумный метод, заключающийся в том, что анионит обрабатывают комплексо-образователем, например цитратом, который при пропускании через колонну раствора, содержащего различные катионы, образует комплексные соединения с кобальтом, никелем, медью, железом, ванадием, из- [c.74]

    В составе их молекулы имеется четыре пиррольных кольца. Порфирины весьма склонны к образованию комплексных соединений с металлами. В нефтях они находятся как в свободном состоянии, так и в виде комплексов с ванадием, никелем и железом. [c.99]

    Среди комплексных соединений, также применяемых в качестве катализаторов, лишь те парамагнитны, которые содержат атомы с неполностью занятыми подгруппами (п = Зд, 4д, или 63 соответственно). Из сравнения [266] магнитных свойств комплексных соединений хрома, железа, кобальта, никеля и меди со свойствами их ионов видно, что аммиачные комплексы хрома, никеля и меди почти так же сильно магнитны, как ионы Сг , N1 и Си , между тем как аммиачные комплексы кобальта и цианид железа не магнитны. Они имеют магнетизм часто типа насыщенных соединений ванадия, хрома, марганца и ниобия. [c.81]

    О возможности такого унаследования свидетельствует увеличение серы в нефтях и битумах с увеличением в них [3, 4] ванадиевых порфиринов, образующихся на раннем этапе образования нефти из органического вещества в нефтематеринских породах. Если учесть тесное геохимическое родство ванадия, урана, тория и их склонность к образованию комплексных соединений, то можно предположить, что уран и торий способны образовывать комплексные соединения с органическим веществом, в которых, по-видимому, участвует и сера. О правильности такого предположения можно судить по увеличению радиоактивности (табл. 2) металлоорганических комплексов, [c.225]


    Спектры ядерного магнитного резонанса (ЯМР). Выводы, полученные при помощи спектров ЭПР, хорошо согласуются с фактами, которые наблюдались при изучении спектров ядерного магнитного резонанса комплексных соединений. Было обнаружено, что если у центрального атома имеется неспаренный электрон, то это существенно влияет на характер спектра ЯМР лигандов. Это влияние можно объяснить лишь тем, что спиновая плотность неспаренного электрона частично перемещается с орбиталей металла на орбитали атомов лиганда. Так, резонансная частота протонов (Н ) кольца в трис(ацетилацетонато)ванадии(П1) (рис. 26.23) значительно сдвинута по сравнению с аналогичным диамагнитным комплексом, например с алюминиевым аналогом. Чтобы объяснить величину этого сдвига, необходимо предположить, что спиновая плотность неспаренного электрона, локализованная на -орбитали металла, если пользоваться формальными представлениями ТКП, в действительности заметно перемещается на л-электронную систему лигандов, а следовательно, и на 18-орбитали атомов водорода. Пожалуй, наи- [c.87]

    Многие элементы экстрагируются из водных растворов органическими жидкостями в виде комплексных соединений, в особенности внутрикомплексных соединений. Серебро, ртуть, медь, цинк, свинец и другие тяжелые металлы экстрагируются в виде дитизонатов и карбаминатов алюминий, галлий, железо, ванадий и др.—в виде оксихинолятов часто практикуется экстрагирование роданидных комплексов железа, молибдена, кобальта, ниобия и др. Для экстракции соответствующих элементов используют также диметилглиоксим, а-иитрозо-р-нафтол, купферон и многие другие реактивы . [c.322]

    В качестве катализаторов используют элементы, характеризующиеся высокими степенями окисления (выше трех), и железо (П1). К таким элементам относятся ТЫ ", Nb Та , Мо" , В некоторых окислительно-восстановительных реакциях катализаторами являются также соединения титана (IV), ванадия (V), хрома (VI), которые легко взаимодействуют с перекисью водорода, образуя комплексные соединения, или пероксосоединения. Образование комплексов с перекисью водорода для проявления катализа условие, по-видимому, необходимое, но недостаточное. [c.77]

    Катализаторами этих реакций служат комплексные соединения титана, ванадия, хрома, марганца, железа, кобальта, никеля, родия, палладия, иридия, рутения. Образование линейных продуктов, как уже говорилось, связано с переносом водорода. Поэтому из указанных катализаторов только кобальт и железо, образующие лабильные гидридные комплексы, ведут реакцию с образованием линейных продуктов н-октатриена-1,3,6 и З-метилгептатриена-1,4,6, тогда как в присутствии остальных катализаторов образуются циклические продукты транс, транс, /иранс-циклододе-катриен, транс, транс, 1(цс-циклододекатриен, циклооктадиен-1,5 и винилциклогексен [21]. [c.233]

    Титан(1У) является элементом, который количественно не удаляется катионообменником вследствие коллоидного состояния. Коркиш 168] добавлял к 1 л анализируемой пробы 10 мл 12 М соляной кислоты, 10 г аскорбиновой кислоты и аммиак для создания pH 4,0—4,5. В этих условиях титан присутствовал в виде анионного комплекса аскорбиновой кислоты. Раствор пропускали через колонку размером 10 см X 0,28 см с дауэксом 1-Х8. Смола поглощала титан вместе с аналогичными комплексными соединениями вольфрама, ванадия, урана, тория и циркония. После переведения смолы в смешанную сульфатно-фторид-ную форму титан вымывали 60 мл 0,05 М раствора серной кислоты, содержащей 6 мл пергидроля. Остальные металлы оставались в колонке. Титан определяли спектрофотометрически. При определении титана в пределах 10—80 мкг/л ошибка не превышала 0,4 мкг/л. [c.110]

    Данные о взаимодействии ванадия (IV) с глицинтимоловым синим в литературе отсутствуют. Поэтому полученные результаты на основании данных полярографического метода были подтверждены результатами спектрофотометрического метода исследования. Спектры поглощения растворов глицинтимолового синего и его соединений с ванадием (IV) были сняты на спектрофотометрах СФ-10 и СФ-4. Как показывают экспериментальные данные, окрашенные комплексные соединения между ванадием (IV) и глицинтимоловым синим образуются в интервале pH 3— И. Максимум светопоглощения для ГТС наблюдается при 440 ммк, а для комплекса — при 590 ммк. Однако оптимальным условием для исследования комплексных соединений является pH 5, так как в этих условиях светопоглощение самого реагента практически отсутствует. [c.87]

    V группа. Образование комплексных соединений особенно характерно для элементов подгруппы ванадия, и наиболее типичны фторидные комплексы состава Ме[ЭлРб], например K[Vp6], К[ТаРб]. [c.394]

    Повышенная стойкость никеля по сравнению с ванадием, очевидно, обусловлена характером комплексных связей обоих металлов в молекулах асфальтенов. Лишь небольшая часть общего содержания металлов присутствует в асфальтенах в виде порфиринов остальное количество содержится в виде других металлоорганических комплексов. Однако установлено, что весь ванадий, содержащийся в кувейтской нефти, является четырехвалентным. Никель же двухвалентен. В результате этого не все валентности, например ванадия, в ванадий-пор-фириновых комплексах, насыщены в координационной плоскости он одновременно связан и с атомом кислорода (или, возможно, серы) связью, перпендикулярной к плоскостной структуре остальной части молекулы. То обстоятельство, что атом кислорода выступает из плоскости комплексного соединения, облегчает доступ металла к катализатору при посредстве вы- ступающего /-етероатома. Никель, валентность которого, на-118 [c.118]

    В 1934 г. Трейбс открыл наличие в нефтях порфиринов В цальнейшем они были обнаружены во многих нефтях. Строение их показывает, что они близки к гемину (красящее вещество крови) и хлорофиллу. В составе их молекулы имеется четыре пиррольных кольца. Порфирины весьма склонны к образованию комплексных соединений с металлами. В нефтях они находятся как в свободном состоянии, так и в виде комплексов с ванадием, никелем и железом. [c.123]

    Характерной особенностью нефти является то, что в ней ванадий и никель встречаются в значительно больших концентрациях, чем другие элементы (табл. 11.7). Обычно в серннстых нефтях превалирует ванадий, а в малосернистых нефтях (с большим содержанием азота)—никель. Наиболее изученными соединениями этих металлов являются порфириновые комплексы. В зависимости от летучести порфириновых комплексов эти металлы могут быть обнаружены в дистиллятных фракциях, но, как правило, концентрируются в смолистых (нпкель-порфирины) и асфальтеиовых (ванадилпорфирины) фракциях иефти. Следует отметить, что в порфириновых комплексах связано от 4 до 20 7о ванадия и никеля, находящихся в нефти, остальное количество обнаружено в других, более сложных комплексных соединениях, которые пока не идентифицированы. [c.298]

    Фотометрический метод с применением дианформазан а-2. Определение основано на образовании комплексного соединения ванадия (IV, V) с дианфор-мазаном-2, имеющего синий цвет при pH 3,5—5. Мешающие компоненты (Ре +, Си +, Т1 +, частично Сг +) отделяют на хроматографической колонке с катионитом КУ-2 в присутствии пероксида водорода. Влияние вольфрама устраняют переведением его в растворимый фосфорнокислый комплекс. [c.342]


    Химизм процесса заключается в абсорбции сероводорода щелочным раствором, последующем окислении сульфид-ионов в серу, регенерации раствора окислением. АДА в составе раствора выполняет функцию катализатора окисления ионов ванадия на стадии регенерации. Модифицированный вариант процесса, известный под названием Сульфолин (разработан фирмой Линде , ФРГ) или Р—S-процесс, использует в качестве катализатора не АДА, а комплексные соединения железа и дополнительно вводит в состав раствора соединения бора. Функция последнего — в предотвращении образования сульфидных соединений ванадия за счет образования смешанного комплекса Ванадий—Бор . В этом случае окисление поглощенного сероводорода происходит селективно в серу без образования кислородных соединений серы. [c.160]

    Определение никеля фотоколориметрическим методом. Метод основан на реакции образования растворимого окрашенного в красный цвет комплексного соединения никеля с диметилглиоксимом в щелочной среде в присутствии окислителя. Состав образуемого комплекса пока полностью не установлен. Определению мешает большой избыток окислителя, так как он может вызвать обесцвечивание раствора. Определению мешают также железо, хром и марганец, поэтому при определении их связывают в растворимые бесцветные комплексные соединения сегнетовой солью (виннокислый калий-натрий). В этих условиях определению не мешают кобальт до 1,5%, молибден до 3%, хром до 18%, вольфрам до 18 %, медь до 2%, ванадий до 1 %. Измерение интенсивности окраски можно проводить визуальным методом, методом шкалы эталонных растворов, на фотоколориметре и спектрофотометре. [c.308]

    Десси исследовал 191 а- и я-комплексное соединение металлов IV—VIII групп периодической таблицы титана и циркония (IV группа) ванадия (V группа) хрома, молибдена и вольфрама (VI группа) марганца и рения (VII группа) железа, кобальта, родия, иридия, никеля и платины (VIII группа). Каждый из этих комплексов был охарактеризован потенциалом полуволны восстановления, потенциалами катодных и анодных пиков на циклических вольтамперограммах, числом электронов, переходящих в начальной стадии и долей комплекса, возвращаемого без изменения при препаративном восстановлении или окислении. Б табл. 13.7 приведены полярографические потенциалы полуволны и число перенесенных электронов и, найденное кулонометрией. [c.395]

    Методами хроматографии и экстракции удалось выделить порфирино-вые комплексы никеля и ванадия, но ни один из них до сего времени вполне достоверно идентифицировать не удалось. Все порфириновые комплексы содержатся в тяжелых фракциях или нефтяных остатках, некоторые, очевидно, имеют низкую, но отчетливо проявляющуюся летучесть вместе с тем некоторые комплексы, содержащиеся в нефтяных остатках, частично разлагаются при промышленных процессах вакуумной перегонки и других термических процессах с образованием летучих металлоргаиических комплексных соединений. К]юме никеля и ванадия, в нефтях могут присутствовать другие металлы — алюминий, титан, кальций, железо, медь и молибден. Эти элементы качественно идентифицированы методами озоления, а в некоторых случаях экстракцией растворителями. В нефтях содержатся также некоторые элементы, очевидно, вводимые извне в результате применения в операциях бурения или добычи различных вспомогательных материалов. Одним из таких элементов является мышьяк, который, к сожалению, при перегонке переходит в бензин и загрязняет его, исключая возможность непосредственного проведения каталитического риформинга на платине. Часто обнаруживается также присутствие микроколичеств свинца обычно в виде тетраэтилпроизводного. [c.126]

    Колориметрический метод определения основан на образовании зеленовато-желтого фосфорно-вольфрамово-ванадиевого комплексного соединения при прибавлении к кислому раствору, содержащему ванадий, фосфорной кислоты и вольфрамата натрия. Окраска комплекса достигает максимума мгновенно, если концентрация вольфрамата натрия в растворе не ниже 0,003 молъ1л. Порядок прибавления реагентов имеет существенное значение сначала прибавляют фосфорную кислоту, а затем вольфрамат натрия. Оптимальная концентрация фосфорной кислоты — 0,1 М, а вольфрамата натрия — [c.151]

    Абсолютное большинство исследователей склоняются к тому, что порфирины, содержащие в своем составе металлы,— относительно стойкие соединения и во время перегонки отгоняются вместе с дистиллятом, не разрушаясь. Так, по данным Джонсона и др. [115], около 10— 15о/о никеля и ванадия в нефтях представлено летучими соединениями. По данным Бибера [95], количество летучих соединений никеля в исследованных нефтях составляло 17—65 /о от общего содержания, а ванадия 5—33 /о. В работе приведена зависимость давления паров комплексов ванадия и никеля. Показано, что давление паров углеводородов в точке кипения и давление паров металлических комплексов укладывается в относительно узкие пределы. Относительно второй прулпы комплексных соединений, сопутствующих в основном асфальто-смо-листым веществам, нет данных о том, что они способны перегоняться. Однако имеется большое число указаний о том, что этот вид соединений попадает в дистиллят в результате заноса в виде капелек жидкости из-за нечеткости фракционирования. [c.21]

    Основными условиями применения в фотометрическом анализе комплексов титана, ванадия, ниобия и тантала с перекисью водорода является силь номи слая среда и достаточный избыток перекиси водорода. Хлориды и сульфаты мало влияют на оптические свойства этих комплексов, хотя по ряду данных они присоединяются к окрашенным комплексам Ме—Н2О2, образуя смешанные комплексы, иногда анионного типа. С другой стороны, комплексы титана и ванадия с Н2О2 вследствие своей невысокой прочности сравнительно легко подвергаются действию различных анионов, связывающих центральный ион. Например, щавелевая кислота резко ослабляет окраску или совсем обесцвечивает раствор перекисноводородного комплекса титана. При этом образуется смешанный комплекс, причем полоса поглощения постепенно сдвигается в ультрафиолетовую область спектра. Известно, что титан образует с фтором более прочный комплекс по сравнению с ванадием. Поэтому в смеси перекисных соединений этих элементов, при действии умеренных количеств фторидо В, можно обесцветить комплексное соединение титана, тогда как окрашенное соединение ванадия не разрушается. Это является основанием одного из методов колориметрического определения ванадия и титана при совместном присутствии. [c.254]

    Первый путь — экстракция органическими растворителями комплексных соединений определяемых элементов (цирконий остается в водном растворе). Так, например, медь экстрагируется в виде пиридинроданидного комплекса хлороформом, вольфрам и молибден — в виде роданидных соединений — бутиловым или изобути-ловым спиртом. Кадмий, кобальт и ванадий экстрагируются одно- [c.84]

    Удаление металлических примесей (ванадия, никеля и железа) из нефти. Как уже указывалось, некоторые металлы, содержащиеся в нефти, присутствуют в виде комплексных соединений-с порфиринами. 3)ти молекулы обладают активностью на поверхности раздела с водой. В частности,, поверхностно-активными свойствами обладают комплексные никель- или ванадиймезопорфирины IX. Поэтому можно предположить, что если, в нефти содержится ванадий- или никельпорфирин с карбоновой кислотной боковой цепью, то эта примесь может быть удалена из нефти процессом эмульсионного разделения. Опубликованные в патентной литературе данные [72] подтверждают возможность удаления железа из нефти при помощи этого метода. Можно также удалить ванадий и никель, если они связаны в виде комплексов поверхностно-активными органическими молекулами. Если эти молекулы обладают лишь умеренной активностью, то снижение растворимости металлов, например добавлением полярных растворителей, может значительно повысить полноту удаления ванадия и никеля. [c.146]

    При pH от 1,4 до 4,5 образуется оксалатный комплекс состава [У0(С204)2] с константой 5- 10 1 [258]. Виннокислый комплекс ванадия, наоборот, мало устойчив если принять его устойчивость при pH = 9,5 за единицу, то устойчивость алюминиевых и железных виннокислых комплексов выразится соответственно величинами 1,4-ГО и 5,5 10 [259]. Интересно поведение ванадия в присутствии роданида пятивалентный ванадий восстанавливается роданидом до четырехвалентного, который образует с роданидом комплексное соединение состава Л1е4УО(С1Ч8)4]. [c.110]

    Ацетилацетон, являясь р-дикетоном, образует желтое комплексное соединение с титаном [179]. Для полноты экстракции применяют трехкратное извлечение. Определению мешают многие элементы. Другой аналог ацетилацетона — 2-теноилтрифтор-ацетон — экстрагирует титан наиболее полно при высокой кислотности. Оптическую плотность экстрагированного соединения измеряют при 430 ммк. Определение возможно в присутствии Сг, Mo, Sn, Th Zr, Al, W, связываемых в комплексы с оксикислотами и комплексоном III. Ванадий и железо не мешают [180]. [c.66]

    В последнее время Таубе [4] подверг систематическому исследованию различную реакционную способность комплексных соеди нений. При этом он главным образом обращал внимание на реакции замещения в комплексах. В этих случаях имеет место либо собственно реакция замещения, в которой какой-либо адденд замещается аддендом другого типа, либо так называемая реакция обмена. В растворах комплексных соединений равновесие имеет динамический характер, и если в растворе присутствует в свободном состоянии комплексообразующее соединение 1акого же типа, то в большинстве случаев адденды комплексного соединения обмениваются с молекулами свободного комплексообразующего веи1,ества. Скорость такой обменной реакции измеряется, иапример, прибавлением к раствору комплекса комплексообразующего вещества, синтезированного из материала, обогащенного радиоактивным изотопом. Через некоторое время выделяется химическим путем комплексный ион или комплексообразующее вещество и измеряется его активность, по которой определяется, до какой степени произошел обмен аддендов. Таубе показал, что реакциями замещения,протекающими крайне медленно.характеризуются преимущественно комплексные соединения внутреннеорбитального типа- с координационным числом 6, у которых на каждой оболочке й находится по крайней мере по одному электрону. Так, например, внутренне-орбитальные комплексы трехвалентного ванадия со структурой д - (Р дР В 8Р характеризуются быстро протекающими реакциями замещения, тогда как комплексы трехвалентного хрома со структурой (1 В 8Р , наоборот, реагируют медленно. [c.29]

    Рингбом с сотрудниками [17] определили константу устойчивости комплекса ванадила с этилендиаминтетрауксусной кислотой Ig E vo.y == 18,05. Это комплексное соединение обладает щелочными свойствами (pZ 3,6). Константу устойчивости комплекса одновалентного таллия с этилендиаминтетрауксусной кислотой определили при 25° Боутен с сотрудниками[18] в растворе с ионной силой ju, = 1, IgE riY = 5,81 и Забранский [7] в растворе с ионной силой /X = 0,1, lgILTiY = 6,04 методом сдвига потенциала полуволны таллия (уравнение 2,47). [c.534]

    Координационные числа ионов металлов изменяются от 1, как в ионных парах, подобных (Ыа+) (С1-) в газовой фазе, до 12 в некоторых двойных оксидах. Нижний предел (КЧ=1) едва ли относится к комплексным соединениям, поскольку ионная пара (Ма+) (С1 ) обычно таковым не считается. Другой пример— катион ванадила У0 +, в котором атом ванадия(IV) имеет, по-видимому, КЧ = 1. Однако свободный ион V0 практически не существует, а является составной частью более сложных комплексов, подобных [V(a a )20] и [У(Н20)50]2+. Верхний предел (КЧ=12) также почти не реализуется в комплексных соединениях рассмотрение ионных кристаллов, например гексагонального перовскита ВаТ10з, как координационных соединений нецелесообразно [ ] Минимальное и максимальное координационные числа, характерные для типичных комплексных соединений, составляют соответственно 2 и 9, а наиболее распространенным является промежуточное значение, равное 6. [c.318]

    Азотистые соединения в нефтях присутствуют в виде гетероциклических соединений [6, 7]) — это производные пиридина, хинолина, пиперидина, индола, бензпиррола. И хотя содержание их в газойлях термического и каталитического крекинга незначительно (обычно не более 0,5%), пренебрегать ими нельзя обладая кислотным или основным характером, азотистые соединения образуют комплексы с металлами, тем самым способствуют повышению содержания в сырье металлоорганических соединений. Так, известны порфирины — комплексные соединения азота с высокомолекулярными углеводородами, включающие атомы ванадия и никеля. Во фракциях каменноугольной смолы содержание азотистых соединений значительно больше, оно достигает 3%, [c.7]

    Ванадиевая контактная масса представляет собой пористую основу, на которую нанесено активное комплексное соединение, содержащее пентоксид ванадия. Точные данные о составе веществ, образующихся в ванадиевой контактной массе, отсутствуют. Не установлен полностью также механизм окисления 50г на этом катализаторе. Существует несколько теорий этого сложного процесса. Рассмотрим одну из них, разработанную на основе результатов многочисленных исследований плавкости соединений, составляющих ванадиевую контактную массу, рентгеноструктурного анализа этих соединений и определения активности контактных масс различного состава. Согласно этой теории, активным комплексом в ванадиевой контактной массе является соединение оксида с пиросульфатом калия УгОз-КзЗгО , которое при температуре процесса (выше 380°С) находится в виде расплава на поверхности пористого носителя. Диоксид серы и кислород, сорбируемые поверхностью катализатора и растворенные в расплаве, взаимодействуют с пентоксидом ванадия [c.144]

    Колориметрирование титана в виде его соединений с перекисью водорода производят на ФЭК-М (см. стр. 178). Определению гитана мешают ванадий, молибден, церий, образующие окрашенные соедикения с перекисью водорода, а также различные соединения, имеющие собственную окраску и способные поглощать свет Б той же области спектра. Фториды, оксалаты, фосфаты и другие адденды, образующие устойчивые комплексные соединения с титаном, препятствуют образованию комплексов титана с перекисью водорода. Перед колориметри-рованием все мешающие ионы должны быть отделены. [c.181]

    Определение марганца (VII) и хрома(VI) в присутствии ванадия (V) осуществляют при помощи бромида калия [10], поскольку скорость реакции ванадия (V) с бромидом во много раз меньще, чем скорость реакции между бромидом и перманганатом и бихроматом, даже в 10 н. серной кислоте. Хорошо идет также реакция окисления МпП до Мп перманганатом при pH 6—7, причем Мп связывают пирофосфатом в прочное комплексное соединение. Подробное изучение этой реакции [11], позволило установить, что наиболее удобным для титрования является потенциал платинового электрода +0,4 В (МИЭ), при котором полностью исключается как анодный ток окисления Мп , так и катодный ток образующегося при титровании Мп , вследствие чего кривые титрования получаются весьма отчетливыми (формы б), так как возрастание тока обусловлено только избытком перманганата. Состав пирофосфатиого комплекса отвечает формуле Мп(Н2Рг07)Г. Метод проверен на стандартных образцах марганцевой руды (№ 1-а, 44-а, смеси стандартного образца № 44-а и стандартного образца хромовой руды № 132). В присутствии хрома добавляют во время разложения пробы около 10 мл фосфорной кислоты плотностью 1,7 г/смз и выжидают 15—20 мин, чтобы хром (III) связался в комплекс, не взаимодействующий с перманганатом [12]. [c.201]


Смотреть страницы где упоминается термин Комплексные соединения Комплексы ванадия: [c.54]    [c.16]    [c.126]    [c.669]    [c.66]    [c.345]    [c.587]    [c.44]    [c.65]    [c.72]    [c.1090]    [c.46]    [c.101]    [c.189]   
Основы общей химии Том 3 (1970) -- [ c.220 , c.293 , c.296 , c.303 ]




ПОИСК





Смотрите так же термины и статьи:

Ванадий комплексы

Комплексные комплексы



© 2024 chem21.info Реклама на сайте