Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексные соединения Комплексы кальция

    Раствор свободного индикатора в кислой среде окрашен в желтый цвет, раствор его комплексного соединения с висмутом—в синий цвет. При прямом титровании раствором соли висмута кислого анализируемого раствора, содержащего комплексон, в присутствии индикатора окраска раствора вначале желтая. В процессе титрования, пока в растворе присутствует комплексон свободный или связанный с солями Са и Mg, добавляемые ионы висмута образуют комплексное соединение с комплексоном (висмут вытесняет кальций и магний из их комплексов с комплексоном) и окраска раствора остается желтой. В конце титрования образуется комплексное соединение висмута с пирокатехиновым фиолетовым окраска раствора становится сначала фиолетовой, потом синей. [c.201]


    В щелочной среде (pH 10) эти индикаторы образуют с магнием и кальцием комплексные соединения красного цвета. Молярное отношение катиона к реагенту в комплексах с кислотным хром темно-синим равно 1 2 [562]. рК магниевого комплекса равно 8,51, кальциевого —9,28. В отсутствие ионов магния и кальция при pH 10 кислотный хром темно-синий окрашен в сине-сирене-вый цвет, а кислотный хром синий К — в сиреневый. При титровании этих ионов кислотный хром темно-синий дает лучший переход окрасок (из ярко-розовой — в сине-сиреневую), поэтому из этих двух индикаторов пользуются предпочтительно им [1156]. Методики титрования в присутствии кислотного хром темно-синего и приготовления его растворов аналогичны таковым для эриохром черного Т. Преимуществом кислотного хром темно-синего перед эриохром черным Т является более высокая чувствительность взаимодействия с ионами магния (2,0-10 г мл) и особенно кальция (1,4-10 г мл) [380, 534]. [c.41]

    Комбинация окиси магния и окиси цинка или стеарата кальция и стеарата цинка со стеариновой кислотой повышает тепловое старение. При увеличении количества окиси магния повышается теплостойкость. Оптимальный комплекс свойств получается если соотношение окиси магния к окиси цинка равно 3 2, а соотношение стеарата кальция к окиси цинка равно 5 1. Выделяющийся при старении резин на основе ПВХ хлористый водород связывается со-стеаратом цинка и в присутствии кальциевой соли образует комплексные соединения, исключающие вредное влияние хлористого [c.69]

    Кислые почвы поглощают тяжелые металлы из растворов в меньшей степени, чем нейтральные или содержащие карбонаты. В то же время в таких почвах значительное количество меди связывается в комплексные соединения. Кислые почвы имеют меньшее число активных центров, занятых протонами, и ионами алюминия, что снижает возможность адсорбции Си " и Са 1 Карбонатные, богатые кальцием почвы могут в большей степени сорбировать тяжелые металлы. Ион кадмия при этом образует малоустойчивые комплексы. В результате Са более подвижен в почвенном профиле по сравнению с Си " . [c.130]

    С кальцием реагент образует вишнево-красное комплексное соединение (рис. 20) [50]. Комплекс образуется при pH 9—12. [c.99]

    Для возможно более полного переведения кальция в комплекс требуется избыток реагента. Колориметрируют при 506 нм в области максимума светопоглощения комплексного соединения мурексида с кальцием [493, 1229, 1351, 1640]. В некоторых работах колориметрирование рекомендуют проводить при 500 [554, 968, 1015, 1052], 505 [805, 1613] и 510 нм [772, 1551]. [c.85]

    Обычно при титровании ионов металлов ЭДТА при pH 10 в конечной точке титрования фиолетовый цвет раствора (наложение синего цвета индикатора на красный цвет комплексного соединения) изменяется на чисто синий (цвет индикатора комплексы металлов кальция, магния, цинка и др. с ЭДТА бесцветны). Эрио-хромов 1Й черный Т обладает очень интенсивной окраской, поэтому его готовят, смешивая с сухим хлорицом натрия в отношениях от 1 100 до 1 400. Для каждого титрования берут шпателем 20-30 мг смеси. [c.117]

    При спектрофотометрическом определении кальция с ГБОА нежелательно присутствие в растворе ацетона или изопропилового спирта, так как они разлагают комплексное соединение [1093]. Этанол, метанол и смесь этанола с бутанолом служат благоприятной средой для образования комплекса кальция с ГБОА [1093]. [c.87]

    При амперометрическом варианте необходимость в индикаторе отпадает. Кроме того, подбирая соответствующие условия, можно проводить титрование в присутствии больших количеств кальция, магния, свинца (при сульфатном фоне свинец в большей своей части окажется в осадке), меди (до соотношения меди к цинку, равном примерно 1 1), кадмия (до соотношения кадмия к цинку, равном примерно 1 10), алюминия и железа. Такая возможность достигается подбором фона, способствующего связыванию мешающих элементов в комплексные соединения или выпадению их в осадок. Так, в ацетатно-аммиачной среде медь и кадмий удерживаются в виде комплексных соединений, а цинк, обладающий наименьшей по сравнению с другими металлами растворимостью ферроцианидного соединения, выпадает в осадок. Железо в аммиачной среде выпадает в осадок и не мешает титрованию, если его содержание не слишком велико, так как в ином случае цинк может адсорбироваться осадком гидроокиси железа. Поэтому при высоких содержаниях железа (около 10% и выше) следует прибегать к добавлению лимонной кислоты связывающей его в достаточно прочный комплекс, из которого ферроцианид не осаждает железо. Добавление лимонной кислоты также ослабляет влияние алюминия, которое вообще довольно заметно при всех титрованиях с платиновым электродом (возможно, что алюминий пассивирует электрод вследствие образования тончайшей пленки гидроокиси, появляющейся в результате гидролиза солей алюминия). [c.345]


    Наиболее безопасным способом снятия наслоений является обработка поверхности комплексоном — трилоном Б (динатриевой солью эти-лендиаминтетрауксусной кислоты). Трилон Б образует комплексное соединение с водонерастворимым карбонатом кальция. Комплекс растворим в воде. Однако и применение трилона Б требует осторожности. Его 10 %-е растворы наносят на поверхность фрески и растворяющееся наслоение постепенно снимают марлевыми тампонами. Последний тонкий слой солей удаляют скальпелем, после чего поверхность для удаления остатков трилона Б промьшают водой. [c.56]

    В щелочной среде раствор кальциона окрашен в синий цвет, продукт взаимодействия с кальцием имеет фиолетово-розовую или ярко-розовую окраску в зависимости от концентрации кальция в растворе [720, 1053, 1230] (рис. 14). Комплексное соединение образуется при соотношении реагирующих веществ Са НК = 1 1 [345]. Максимум светопоглощения раствора кальциона (при pH 12,5) находится при 595 А- ако комплекса кальция равна 525 нм [c.90]

    Комплексы кальция обычно координационно ненасыщенны и образуют в водной среде устойчивые гидраты. Последние могут экстрагироваться органическими растворителями только при замене координационной воды полярным органическим растворителем. Разработаны методы экстракционного выделения кальция из различных смесей, основанные на образовании тройных комплексных соединений Са—комплексообразующий агент — полярный органический растворитель [221]. [c.166]

    Ионы висмута образуют с тиомочевиной окрашенное в желтый цвет комплексное соединение. Оно менее устойчиво, чем комплексное соединение висмута с комплексоном. Поэтому при титровании кислого анализируемого раствора, содержащего комплексон, солью висмута в присутствии тиомочевины раствор остается бесцветным, пока весь комплексон (свободный или соединенный с кальцием и магнием) не перейдет в комплексонат висмута, и лишь тогда следующая капля раствора соли висмута вызовет желтое окрашивание комплекса висмута с тиомочевиной. Можно проводить как прямое, так и обратное титрование. [c.203]

    После удаления свободного SO2 путем выпаривания сульфитного щелока из сернистых соединений остается сульфит. Остаток растворяют в-воде и определяют в нем сульфит титрованием йодом, как и при определении общего SO2. Содержание свободного SO2 находят по разности между содержанием общего SO2 и SO2 в виде сульфита. Содержание серы, связанной в лигносульфоновом комплексе, вычисляют как разность между содержанием всей серы в сульфитном щелоке и суммой общего SO2, легкоотщепляемого SO2 и 50 , выраженных в процентах SO2. Сульфат-ионы 50 определяют при осаждении их в виде сульфата бария в кислой среде весовым методом или комплексометрически. Для определения суммы кальция и магния предназначен метод, основанный на реакциях кальция и магния с трилоном Б (кислая динатриевая соль этилендиамин-тетрауксусной кислоты). Образуется растворимое в воде комплексное соединение, которое разлагается в кислой среде, но устойчиво в щелочной. Реакцию проводят при pH 12. Титрование трилоном Б проводится в присутствии индикатора эри-хрома черного Т. Содержание натрия в сульфитных щелоках на натриевом основании рассчитывают по содержанию сульфита. В сульфитных щелоках на смешанном основании содержание натрия рассчитывают по разности между сульфитами кальция и натрия и сульфитом кальция, содержание которого находят расчетом по результатам трилонометрического анализа. [c.331]

    В 1945 г. эти вещества начал углубленно изучать цюрихский профессор Г. Шварценбах со своими сотрудниками. Им и его школой были выяснены существенные особенности образования комплексных соединений с разными комплексонами, выведены константы диссоциации отдельных комплексообразующих кислот, затем константы образования их комплексов с разными катионами, изучена кинетика реакций образования и диссоциации комплексных соединений. Также очень подробно была исследована зависимость между строением и комплексообразующей способностью комплексонов. Результаты физико-химических исследований швейцарской школы будут лишь в общих чертах приведены в последующих главах. Теоретические исследования Шварценбаха привели к возникновению первого аналитического применения комплексов в области так называемых комплексометрических титрований, из которых, например, объемное определение кальция и магния нашло широкое применение в аналитической практике. [c.6]

    Ф. Уолл и др. [116] предполагают, что взаимодействие полиакриловой кислоты с такими двухвалетными катионами, как кальций и стронций, носит электростатический характер, в то время как с ионами меди наблюдается более сложное взаимодействие, вследствие образования комплексных соединений, преимущественно хелатной структуры, включающей соседние карбоксильные ионы. Исследованиями Григг и др [117] подтверждается образование комплексов полиакриловой кислоты и меди. [c.47]

    Сущность метода. ЭДТА образует с кальцием более прочно е комплексное соединение, чем с магнием (р/( устойчивости комплексов соответственно равны 10,57 и 8,68). Поэтому при добавлений ЭДТА к раствору, содержащему Са + и М +, в первую очередь реагирует кальций и только тогда, когда весь кальций будет свя зан в комплекс, начинает титроваться магний. Это рааделение облегчается еще и тем, что титрование кальция проводят прй pH 12—13, когда магний выпадает в осадок в виде гидроксида. После титрования кальция раствор подкисляют, добавлением буферного раствора приводят pH к 10 0,1 и титруют магний. Если в качестве индикатора при определении кальция служил кислотный хром темно-синий, то этот же индикатор будет служить и для определения магния, Если при определении кальция применили мурексид, то при подкислении раствора он разрушится. Разрушение ускоряют нагреванием или добавлением 1 капли бромной воды. Затем для определения магния вводят новый индикатор— кислотный хром черный специальный (эриохром черный Т). Если содержание кальция в пробе известно заранее, то можно, пользуясь этим индикатором, оттитровать при pH = 10 0,1 сумму кальция и магния и, зная содержание кальция, рассчитать содержание магния. [c.119]

    Данные о зависимости ионообменных равновесий на цеолите А от природы аниона и от присутствия комплексообразователей весьма ограниченны. Авторы работы [18] исследовали обмен ионон кальция, кадмия и цинка в растворах различных электролитов и разработали метод определения констант ионообменного равновесия для комплексных анионов, который, кроме того, позволяет рассчитать число лигандов в образующихся комплексных соединениях. Установлено, что коэффициент селективности уменьшается с возрастанием концентрации электролита. Резкое снижение селективности объясняется тем, что, взаимодействуя с обмениваемым катионом (например, кадмием), электролит образует анионный комплекс. Селективность снижается также из-за участия в обмене катиона электролита. В качестве метода декатиони-ровапия использовалась реакция образуется нерастворимой соли, в частности соли серебра. [c.557]

    В нейтральной и слабокислой среде раствор арсеназо I окрашен в розовый, а в щелочной — синевато-розовый цвет. С кальцием в щелочной среде реагент образует комплексное соединение красно-фиолетового цвета (рис.15) [4641. Максимум поглощения находится при 520 нм, где наблюдается наложение спектров поглощения реагента я его комплекса с ка [ьцием, поэтому фотометрируют нри 560—Г)80 нм. В этой областп спектра поглощение реагента н колгплекса наиболее различается [92, 386, 464, 619]. [c.92]


    Как видно из рис. 20, наибольшая разность в поглощении комплекса наблюдается при 600 нм [50]. Фотометрируют при 595 нм [50, 51] по уменьшению интенсивности окраски кислотного хром темно-синего. Окраска развивается сразу же после сливания растворов и устойчива в течение 90 мин. 655, 1316]. Чувствительность реакции 1,4-10" г мл раствора [50]. Закон Бера для растворов комплексного соединения кальция с кислотным хром темно-синим не соблюдается (оптическая плотность уменьшается с увеличением концентрации кальция) [50]. Повышение pH приводит к уменьшению чувствительности (рис. 21). Оптимальное количество щелочи —5-мл 10%-ного раствора Ка0н/100.Л4Л [50]. При фотометрическом определении кальция используют 0,02%-ный водный раствор кислотного хром темно-синего [50, 51]. Водные растворы реагента устойчивы несколько недель [50]. Определению [c.99]

    Двухъядерные комплексы не были получены с 1,2-диаминоцикло-гексантетрауксусной кислотой, а только с 1,3- и главным образом с 1,4-кислотой. У последней расстояние между обоими атомами азота достаточно велико, чтобы обе иминодиуксусные группы могли образовывать независимые друг от друга комплексные соединения. Их устойчивость меньше, чем у аналогичных полиметиленовых кислот. В табл. И помещены соответствующие константы нестойкости комплексов с кальцием и магнием. [c.37]

    Большие теплоты гидратации ионов электролитов, свидетельствующие о возникновении в растворе более или менее устойчивых гидратов, позволяют рассматривать их как аквокомплексы, т. е. комплексные соединения, содержащие воду в качестве лигандов, например гидратированные ионы кальция и алюминия можно представить в виде [Са(Н20)б] + и [А1(Н20)б] +. Особы-ми свойствами, обладает ион водорода, протон образует прочный аквокомплекс иона гидроксония (Н3О+), в котором диполями электронов служат неподеленные пары атома кислорода молекулы воды, а акцептором — сам протон, обладающий вакантными орбиталями. В водных растворах к этому иону присоединяются еще три менее прочно связанные с ним молекулы воды, и образуется комплекс Н9О4+. В аквокомплексах, образованных катионами, как и в других комплексных соединениях, ковалентность связей уменьшается с увеличением радиуса иона, поэтому гидратацию больших ионов в первом приближении можно рассматривать как ион-дипольные взаимодействия. [c.83]

    Иногда точку эквивалентности хелатометрического титрования определяют физико-химическими методами. Но чаще всего используют индикаторы-комплексообразователи, т.е. органические красители, образующие с катионами окрашенные комплексные соединения (так называемые металл-индикаторы). Например, катионы кальция, магния (и некоторые другие) дают с такими индикаторами внутрикомп-лексиые соединения красного цвета. Эти соединения, однако, менее прочны, чем комплексы тех же катионов с комплексоном III. Поэтому при титровании анализируемого раствора комплексоном III ионы металла переходят от индикатора к комплексону и выделяется свободный ион индикатора, имеющий синюю окраску. Таким образом, в точке эквивале]гг юсти красная окраска раствора сменяется синей. [c.293]

    Ниже приводятся методы определения общего содержания ЭДТА в сточных водах, свободного и связанного. Методы основаны на том, что в кислой среде (pH = 1—2) комплексонаты кальция и магния малоустойчивы, а висмут образует с ЭДТА очень прочное комплексное соединение, при этом кальций и магний вытесняются из комплексов. Для определения ЭДТА применяют прямое или обратное титрование в присутствии индикатора, по реакции которого устанавливают присутствие или отсутствие ионов висмута в кислой среде, — пирокатехиновый фиолетовый или тиО карбамид. [c.396]

    Методы основаны на том, что в кислой среде (pH 1—2) комплек-сонаты кальция и магния мало устойчивы, а висмут образует с комплексоном очень прочное комплексное соединение. К анализируемому раствору, подкисленному до pH 1—2, прибавляют в избытке соль висмута (последний связывает как свободный комплексон, так и вытесненный из его комплексов с кальцием и магнием), после чего избыток висмута определяют прямым или об- [c.200]

    Этот комплекс менее стоек, чем комплексное соединение кальция с трилоном, и при титровании последним в эквивалентной точке происходит резкое изменение окраски  [c.47]

    Методами хроматографии и экстракции удалось выделить порфирино-вые комплексы никеля и ванадия, но ни один из них до сего времени вполне достоверно идентифицировать не удалось. Все порфириновые комплексы содержатся в тяжелых фракциях или нефтяных остатках, некоторые, очевидно, имеют низкую, но отчетливо проявляющуюся летучесть вместе с тем некоторые комплексы, содержащиеся в нефтяных остатках, частично разлагаются при промышленных процессах вакуумной перегонки и других термических процессах с образованием летучих металлоргаиических комплексных соединений. К]юме никеля и ванадия, в нефтях могут присутствовать другие металлы — алюминий, титан, кальций, железо, медь и молибден. Эти элементы качественно идентифицированы методами озоления, а в некоторых случаях экстракцией растворителями. В нефтях содержатся также некоторые элементы, очевидно, вводимые извне в результате применения в операциях бурения или добычи различных вспомогательных материалов. Одним из таких элементов является мышьяк, который, к сожалению, при перегонке переходит в бензин и загрязняет его, исключая возможность непосредственного проведения каталитического риформинга на платине. Часто обнаруживается также присутствие микроколичеств свинца обычно в виде тетраэтилпроизводного. [c.126]

    Для устранения мешающего влияния других металлов, образующих аналогичные комплексные соединения с ЭДТА, поступают следующим образом. Сначала к щелочному раствору прибавляют цианид калия, который связывает в прочные цианидные комплексы медь, никель, кобальт, марганец, серебро, цинк и кадмий, и титруют ЭДТА магний и кальций. Затем приливают раствор формальдегида. Последний выделяет цинк [c.171]

    Методы основаны на том, что в кислой среде (pH 1—2) комплексонаты кальция и магния мало устойчивы, а висмут образует с комплексоном очень прочное комплексное соединение. К анализируемому раствору, подкисленному до pH 1—2, прибавляют в избытке соль висмута (последний связывает как свободный комплексон, так и вытесненный из его комплексов с кальцием и магнием), после чего избыток висмута определяют прямым или обратным титрованием комплексоном, добавляя индикатор, отмечающий присутствие или отсутствие ионов висмута в кислой среде,—пирокатехин фиолетовый или тиомо-чевину.  [c.181]

    Диаминоциклогексантетрауксусная кислота образует, как видно из табл. 11, с кальцием и магнием нормальные комплексные соединения МеУ -, которые по своей устойчивости превосходят аналогичные комплексные соединения этилендиаминтетрауксусной кислоты. Из всех известных до настоящего времени—это наиболее прочные комплексы, образуемые этими катионами. Остальные двух-и трехзарядные катионы также образуют с этой кислотой весьма стойкие комплексы, что было установлено их полярографическим исследованием. Более подробно сведения по этому вопросу приведены в главе, посвященной полярографии. Остальные изомеры, именно 1,3-и 1,4-диаминоциклогексантетрауксусная кислоты, образуют менее стойкие комплексные соединения, чем аналогичные кислоты, производные триметилендиамина и тетраметилендиамина. [c.37]


Смотреть страницы где упоминается термин Комплексные соединения Комплексы кальция: [c.267]    [c.125]    [c.126]    [c.75]    [c.330]    [c.465]    [c.51]    [c.54]    [c.101]    [c.221]    [c.100]   
Основы общей химии Том 3 (1970) -- [ c.303 , c.304 , c.308 ]




ПОИСК





Смотрите так же термины и статьи:

Кальций комплексы

Кальций соединения

Комплексные комплексы



© 2024 chem21.info Реклама на сайте