Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексные соединения Комплексы кислотность

    Органические и неорганические осадители при соответствующих условиях могут реагировать не с одним, а со многими ионами. Реактивов, которые осаждали бы только один ион из любой сложной смеси, нет. При анализе сложных смесей выбор возможно более специфического реактива имеет существенное значение, однако наиболее важен выбор наилучших условий для проведения реакции. Иногда разделение элементов, образующих осадки с одним и тем же реактивом, удается выполнить наиболее простым способом —созданием определенной кислотности. Однако этот способ не всегда достигает цели, а иногда неудобен. Очень часто поэтому применяют другой способ вводят вещество, связывающее в комплекс ионы других элементов, мешающих осаждению данного иона. Ион мешающего элемента хотя и остается в растворе, но связывается в комплексное соединение. При таком способе удаления мешающих ионов не требуется фильтрование и не возникает осложнений в связи с соосаждением. [c.106]


    Причины различной относительной устойчивости многочисленных комплексов этих элементов можно понять с позиций теории жестких и мягких кислот и оснований. В качестве примера рассмотрим комплексные соединения кобальта в степени окисления 4-3 [ o(NH3)s] + (жесткая кислота), [ o( N)s] (мягкая кислота). Если в кислотно-основном комплексе кислота— жесткая, то более устойчив комплекс с жестким основанием (например, с ионом F ) и менее устойчив комплекс с мягким основанием (например, с ионом 1 ) Со(ЫНз)5р]2+ более устойчив, чем [Со(ННз)51] +. Подтверждением правила, согласно которому мягкие кислоты образуют более устойчивые комплексы с мягкими основаниями, служит сравнение различных сме- [c.635]

    К настоящему времени установлены многочисленные закономерности в изменении свойств элементов и их соединений в связи с периодической системой. Это относится к кислотно-основным, окислительно-восстановительным и многим другим свойствам, имеющим химико-аналитическое значение. Четко выражено, например, нарастание основного характера оксидов в вертикальных рядах сверху вниз. Периодический закон Д. И.Менделеева позволяет, например, систематизировать обширный материал по устойчивости комплексных соединений, предвидеть существование новых комплексов и оценивать их стабильность. [c.15]

    Реакция (13.14) идет в кислом растворе и избытке К1, причем рекомендуется выдерживать реагирующую смесь в темноте в течение 10...15 мин для полноты протекания процесса. Наилучшие результаты получаются, когда кислотность раствора находится в пределах 0,2...0,4 моль/л. При более высокой концентрации кислоты происходит заметное окисление иодида кислородом воздуха, а при более низкой кислотности реакция существенно замедляется. Выдерживание реагирующей смеси в темноте до окончания реакции необходимо еще и потому, что ионы Сг +, появляющиеся при восстановлении дихромата, образуют с тиосульфатом прочное комплексное соединение, что вызывает дополнительный расход тиосульфата натрия, так как связанный в комплекс ЗгОз реагирует с иодом очень медленно. Если титрование тиосульфатом натрия проводить после окончания реакции [c.282]

    Классификация каталитических реакций. Катализ делят на гомогенный и гетерогенный. Гомогенный катализ можно разделить на кислотно-основной (его вызывают кислоты и основания), окислительно-восстановительный (его вызывают соединения металлов переменной валентности), координационный (катализаторы — комплексные соединения), гомогенный газофазный (катализаторы — химически активные газы, такие, как N62, ВГз и т. д.) и ферментативный. Деление это не строго, так как одна и та же реакция, например гидролиз сложного эфира, может в зависимости от катализатора— кислоты, комплекса или фермента — попасть в ту или иную группу, [c.169]

    Вопрос о взаимосвязи между кислотно-основными свойствами комплексного соединения и зарядом его центрального иона впервые был затронут в работе Косселя, полагавшего, что диссоциация внутрисферной воды с выделением иона водорода вызвана электростатическим взаимодействием центрального атома с ионом водорода воды. Чем выше заряд центрального иона, те.м сильнее проявляется электростатическое отталкивание протона от одноименно заряженного центрального иона и тем более сильно выраженные кислотные свойства должны быть присущи данному соединению. С этой точки зрения можно объяснить, почему соединение трехвалентного кобальта [Со(МНз)б]Хз сообщает раствору нейтральную реакцию, тогда как комплекс четырехвалентной платины [Р1(МНз)5С1]С1з обладает кислотными свойствами. [c.283]

    Кислотно-основные свойства комплексных соединений связаны с устойчивостью комплексов в растворе. В приведенном ниже ряду устойчивость в водном растворе, характеризующаяся в данном случае тенденцией к замещению аминогрупп молекулами воды, уменьщается снизу вверх, тогда как pH растворов этих комплексов увеличивается в том же порядке  [c.287]


    Рассмотрим этапы исследования фотометрических реакций с органическими реагентами, в результате которых образуются комплексные соединения. Оптимальные условия проведения реакции требуют возможно более полного связывания определяемого элемента в комплекс. Большинство органических реагентов обладает кислотно-основными свойствами. Если предполагается, что ион элемента вступает в реакцию с органическим реагентом, являющимся одно-, двух- или многоосновной кислотой (т. е. реакция протекает по типу замещения протона кислоты ионом металла), то в общем виде реакцию образования комплексного соединения можно представить уравнением (а) (см. стр. 36). Следовательно, условия образования комплексного соединения будут зависеть не только от избытка реагента, но также от pH раствора. Особое значение указанные факторы приобретают, [c.40]

    Интенсивность кислотных и основных свойств комплексных соединений зависит от размера, заряда и поляризационных свойств центрального иона, от величины заряда комплексного иона, степени диссоциации молекул RH в свободном состоянии, от устойчивости комплекса в растворе, от строения комплекса и характера взаимного влияния координированных групп. [c.390]

    Кроме образования комплексных соединений, используют образование окрашенных продуктов в реакциях окисления-восстановления и образование золей нерастворимых окрашенных соединений. Используются некоторые реакции синтеза органических красителей и изменение окраски при диссоциации кислотно-основных индикаторов. На все эти реакции и устойчивость растворов может влиять pH среды. Например, pH влияет на окраску комплексных соединений катионов металлов с анионами сильных и слабых кислот, на состав окрашенного комплексного соединения. Максимум оптической плотности часто отвечает определенному pH. Может резко изменяться окраска раствора. Например, фиолетовый салициловый комплекс железа при рН4 [c.462]

    Расчеты растворимости осадков при образовании комплексов связаны с некоторыми затруднениями. Обусловлено это тем, что для многих комплексных соединений пока не установлены константы диссоциации (константы нестойкости или устойчивости). Кроме того, комплексные ионы, аналогично многоосновным кислотам, образуются и диссоциируют ступенчато. Состояние равновесия между отдельными формами комплексных групп зависит от концентрации лиганда и кислотности раствора. [c.176]

    В зависимости от кислотности раствора можно разделить катионы всех металлов на две большие группы. Еще большее дифференцирующее действие проявляют органические реактивы, которые являются слабыми кислотами и в то же время образуют очень прочные комплексы с ионами металлов. В качестве примера на рис. 26.3 приведен дитизоновый спектр , т. е. зависимость экстракции дитизонатов некоторых металлов от pH раствора. Из рисунка видно, что ртуть и серебро экстрагируются тетрахлоридом углерода в виде дитизонатов металлов в очень кислой среде ионы висмута и меди экстрагируются в менее кислой среде с повышением pH экстрагируются ионы цинка, кадмия, индия и других металлов. Таким образом, регулируя только pH раствора, можно в значительной мере провести разделение металлов. Подобным образом можно разделить ионы металлов в виде гидр-оксихинолинатов и других комплексных соединений с органическими реактивами. [c.536]

    Величины констант равновесия редко приводятся в таблицах. Однако их можно легко рассчитать из табличных значений произведений растворимости соответствующих электролитов и констант устойчивости (для малорастворимых комплексных соединений) или констант кислотной диссоциации (для малорастворимых кислот). Так, для малорастворимого комплекса состава АВ имеем  [c.194]

    К водным основным растворителям целлюлозы относятся растворы комплексных соединений гидроксидов некоторых поливалентных металлов с аммиаком или аминами щелочные растворы комплексов, в которых центральный атом металла связан с молекулами гидроксикислот растворы четвертичных аммониевых оснований. К водным кислотным растворителям относят концентрированные растворы минеральных кислот, а также смеси кислот и солей. Нейтральные водные растворители - это главным образом концентрированные растворы ряда солей. В данной главе рассматриваются лишь наиболее важные водные системы. [c.556]

    Оптимальной кислотностью образования комплексного соединения является 1—2 М по серной кис-ло те. Окрашенные ионы Ре (П1) при их высоких содержаниях мешают определению титана. Для устранения влияния железа применяют фосфорную кислоту, которая связывает железо в бесцветный комплекс [Ре(Р04)2 Фосфорная кислота ослабляет окраску также и комплексного соединения титана в связи с образованием бесцветного комплексного аниона, поэтому кислоту вводят в стандартные растворы. К другим элементам, мешающим определению титана окраской собственных ионов или образующим с пероксидом водорода окрашенные соединения, относятся никель (П), хром (III), ванадий (V), молибден (VI), ниобий (V). [c.121]

    В щелочной среде (pH 10) эти индикаторы образуют с магнием и кальцием комплексные соединения красного цвета. Молярное отношение катиона к реагенту в комплексах с кислотным хром темно-синим равно 1 2 [562]. рК магниевого комплекса равно 8,51, кальциевого —9,28. В отсутствие ионов магния и кальция при pH 10 кислотный хром темно-синий окрашен в сине-сирене-вый цвет, а кислотный хром синий К — в сиреневый. При титровании этих ионов кислотный хром темно-синий дает лучший переход окрасок (из ярко-розовой — в сине-сиреневую), поэтому из этих двух индикаторов пользуются предпочтительно им [1156]. Методики титрования в присутствии кислотного хром темно-синего и приготовления его растворов аналогичны таковым для эриохром черного Т. Преимуществом кислотного хром темно-синего перед эриохром черным Т является более высокая чувствительность взаимодействия с ионами магния (2,0-10 г мл) и особенно кальция (1,4-10 г мл) [380, 534]. [c.41]

    Поляризационные представления оказались полезными для объяснения устойчивости, кислотно-основных и окнслительно-вос-сталовнтельных свойств комплексных соединений, но многие другие их свойства остались необъясненными. Так, с позиций электростатической теории все комплексы с координационным числом 4 должны иметь тетраэдрическое строение, поскольку именно такой конфигурации соответствует наименьшее взаимное отталкивание лигандов. В действительности, как мы уже знаем, некоторые по- добные комплексы, например, образованные платиной(И), построены в форме плоского квадрата. Электростатическая теория не в состоянии объяснить особенности реакционной способности комплексных соединений, их магнитные свойства и окраску. Более точное и полное описание свойств и строения комплексных соеди- нений может быть получено только на основе квантовомеханиче- ских представлений о строении атомов и молекул. [c.594]

    Влияние координации на свойства лигз.ндоз я централь ного атома. Взаимное влияние лигандоз, Коорднпгщия сопряжена с изменением электронной конфигурации лигандов и в результате приводит к изменению их свойств. Это хороню видно на пример кислотно-основных свойств комплексных соединений. В то время как свободный ам.миак обладает а водном растпоре основными свойствами, комплекс [Р1(N1-13)6] + проявляет свойства кислоты и вступает в обратимую реакцию со щелочью  [c.604]


    Железо (III) образует с сульфосалициловой кислотой ряд комплексных соединений в зависимости от кислотности раствора. Относительно состава комплексов мнения разноречивы. Считают, что при pH 1,8—2,5 образуется комплексное соединение с соотношением компонентов 1 1, растворы которого окрашены в фиолетовый цвет  [c.57]

    Расчеты растворимости осадков при условии связывания катиона в комплекс несколько затруднены, так как для многих комплексных ионов неизвестны точные величины констант диссоциации (констант нестойкости). Кроме того, комплексные ионы, содержащие несколько координированных групп (обычно 4 или 6), образуются и диссоциируют ступенчато, подобно многоосноБным кислотам. Наконец, состояние равновесия образования многих важных групп комплексных соединений, как цианиды, виннокислые и другие комплексы, зависит от кислотности раствора (см. 22). [c.43]

    Координация сопряжена с изменением электронной конфигурации лпгандов и в результате приводит к изменению их свойств. Это хорошо видно на примере кислотно-основных свойств комплексных соединений. В то время как свободный аммиак обладает в водном растворе основными свойствами, комплекс [Pt(NH3)6] " проявляет свойства кислоты и вступает в обратимую реакцию с щелочью  [c.376]

    В непосредственной близости к центральному иону располагаются молекулы или ионы (так называемые заместители, адденды, или лиганды), образующие внутреннюю координационную сферу комплексного соединения. В настоящее время в литературе принято обозначать внутреннюю сферу комплексного соединения, включая центральный ион, термином комплекс. Если кислотные остатки, присутствующие во внутренней сфере, нейтрализуют заряд центрального иона, то соединение, как правило, не содержит в своем составе других ионов. Примером такого типа соединений являются только что упомянутые изомеры [Р1(ЫНз)2С12], относящиеся к неэлектролитам. Но чаще суммарный заряд ионов внутренней сферы не равен заряду центрального иона, тогда комплекс представляет собой комплексный ион, [c.27]

    Молибден с триоксифлуороном и его производными образует комплексное соединение при соотношении компонентов Мо R 1 1 и 1 2 в зависимости от кислотности раствора. Эти соединения не экстрагируются органическими растворителями. В присутствии антипирина и его производных образуются комплексы катионного характера, которые при добавлении анионов сильных кислот хорошо экстрагируются хлороформом в виде ионных ассоциатов, предполагаемого состава [МоОгФАнТа] A , где Ф — триоксифлуорон Ант—антипирин  [c.181]

    Дальнейшее развитие теории катализа тесно связано с исследованием состояния катализатора во время реакции. Принципы структурного и энергетического соответствия, оставаясь решающими, должны относиться к системе катализатор — реагирующее вещество, сложившейся ко времени достижения стационарного состояния катализатора. Степень окисления поверхностных атомов катализатора, природа лигандов и состав промежуточного координационного комплекса определяют направление реакции и лимитирующие стадии. Решающую роль играют методы определения состояния катализатора и всей системы во время реакции. Одним из таких методов является измерение потенциала (или электропроводности) катализатора во время реакции. Легче всего это сделать в проводящих средах как в жидкой, так и в газовой фазе для гетерогенных и гомогенных катализаторов. В окислительно-восстановительных процессах структурным фактором являются не только размеры кристаллов и параметры решеток, но и кислотно-основные характеристики процессов. Всякая поверхность или комплексное соединение представляют собой кислоту или основание по отношению к реагирующему веществу, а это определяет направленность (ориентацию) и энергию взаимодействия вещества с катализатором. Для реакции каталитической гидрогенизации предложена классификация основных механизмов, основанная на степени воздействия реагирующего вещества на поверхность катализатора, заполненную водородом. В зависимости от природы гидрируемого вещества в реакции участвуют различные формы водорода. При этом поверхность во время реакции псевдооднородна, а энергия активации— величина постоянная и зависящая от потенциала поверхности (или раствора). Несмотря на локальный характер взаимодействия, поверхность в реакционном отношении однородна и скорость реакции подчиняется уравнению Лэнгмюра — Хиншельвуда, причем возможно как взаимное вытеснение адсорбирующихся веществ, так и синергизм, т. е. увеличение адсорбции БОДОрОДЗ ПрИ адсорбции непредельного вещества. Таким образом, созданы основы теории каталитической гидрогенизации и возможность оптимизации катализаторов по объективным признакам. Эта теория является продолжением и развитием теории Баландина. [c.144]

    Существенную роль в процессе вымывания играет pH раствора, так как прочность комплексов РЗЭ падает с увеличением кислотности. Оптимальный pH элюирующего раствора тем ниже, чем прочнее комплексное соединение. Обычно при высоком pH лучше разделяются легкие РЗЭ, при низких — тяжелые. [c.119]

    Основные принципы образования названий комплексных соединений следующие. К названиям кислотных остатков, находящихся во внутренней координационной сфере комплекса, прибавляется окончание -о, а количество их определяется греческим числительным, например дибромо-, тетрахлоро-, гексанит о-. Кислород определяется термином ОКСО-, гидроксил — гидроксо-. Названия больщинства нейтральных молекул не изменяются, изменяются названия воды и аммиака, определяемые терминами акво- и аммин-. Названия кислотных остатков, находящихся во внещней координационной сфере комплекса, остаются без изменений — сульфат, нитрат, хлорид и т. п. [c.28]

    Несколько аналогичен рассмотренному процессу сульфирования и метод выделения ж-ксилола реакцией с системой фтористый водород — фтористый бор. Все изомерные ксилолы весьма быстро и обратимо реагируют с системой фтористый водород — фтористый бор, образуя комплексные соединения, но комплекс с мета-изомером наиболее стабилен. Это явление используется для выделения сравнительно чистого ж-ксилола из ксилольной фракции [9, 16, 26, 31]. Образующиеся комплексы полностью растворимы в избытке фтористого водорода, но пепрореагировавшие ксилолы практически нерастворимы. Разделение осуществляют достаточно длительным контактированием реагирующих компонентов для образования комплексов с ж-ксилолом, переходящих в кислотную фазу. После отстаивания отделяют органическую фазу с высоким содержанием п- и о-ксилолов. Из кислотной фазы, содерн а-щей комплекс ж-ксилола, испарением смеси фтористого водорода и фтористого бора выделяют чистый ж-ксилол. Этот процесс позволяет получить л-ксилол чистотой 95% правда, для достижения этой чистоты требуется несколько ступеней контактирования и последующего разделения. [c.267]

    Определению родия (III) мешают Pd(l ), Pt(IV), образуя с 1,2,4-триазо-лин-З-тионом комплексные соединения. При нагревании и уменьшении кислотности раствора до pH 3,0 — 4,5 желтый комплекс платины с реагентом переходит в оранжевый с Х ах нм. Комплекс родия с реагентом в этой области практически не поглощает света. На этом основании определение Rli lll) в присутствии 50 - 100-кратных количеств платины (IV). [c.27]

    Плазменные липопротеины (ЛП)—это сложные комплексные соединения, имеющие характерное строение внутри липопротеиновой частицы находится жировая капля (ядро), содержащая неполярные липиды (триглицериды, эстерифицированный холестерин) жировая капля окружена оболочкой, в состав которой входят фосфолипиды, белок и свободный холестерин. Толщина наружной оболочки липопротеиновой частицы (ЛП-частица) составляет 2,1—2,2 нм, что соответствует половине толщины липидного бислоя клеточных мембран. Это позволило сделать заключение, что в плазменных липопротеинах наружная оболочка в отличие от клеточных мембран содержит липидный монослой. Фосфолипиды, а также неэсте-рифицированный холестерин (НЭХС) расположены в наружной оболочке таким образом, что полярные группы фиксированы наружу, а гидрофобные жирно-кислотные хвосты —внутрь частицы, причем какая-то часть этих хвостов даже погружена в липидное ядро. По всей вероятности, наружная оболочка липопротеинов представляет собой не гомогенный слой, а мозаичную поверхность с выступающими участками белка. Существует много различных схем строения ЛП-частицы. Предполагают, что входящие в ее состав белки занимают только часть наружной оболочки. Допускается, что часть белковой молекулы погружена в ЛП-частицу глубже, чем толщина ее наружной оболочки (рис. 17.4). Итак, плазменные ЛП представляют собой сложные надмолекулярные комплексы, в которых химические связи между компонентами комплекса носят нековалентный характер. Поэтому применительно к ним вместо слова молекула употребляют выражение частица . [c.574]

    Выделению и изучению комплексных соединений рения с эти-леидиамином и пиридином посвящены сообщения [166—168]. Синтез комплексов рения(У) с этилен диамином описан в работе [1340], спектры светопоглощеиия растворов соединений и кислотные константы ассоциации соединений типа ВеОзЕнг — в работе [1070]. [c.43]

    При взаимодействии перренат-иона с тиосалициловой кислотой в присутствии Sn lj образуется окрашенное в желто-зеленый цвет комплексное соединение [514, 528]. Спектр светоноглощения соединения имеет интенсивную полосу при 380—420 нм, где поглощение самой тиосалициловой кислоты незначительно (рпс. 42). Образование тиосалицилатного комплекса рения отвечает узкому интервалу по кислотности> (pH 0,5—1,5). Методом изомолярных серий показано, что в состав тиосалицилатного комплекса входит пятивалентный рений. Процесс восстановления схематично можио выразить следующим уравнением  [c.108]

    Следующие две молекулы тиомочевины расходуются на образование комплекса Au(I). Реакция протекает одинаково при кислотности 1—4 N НС1 и pH 1—10. Отношение Ли 8С(КН2)г, равное 1 3, подтверждено [406] при исследовании вольтамперных кривых на фоне 0,5 М KNO3, 0,5 N H2SO4 и 0,1 М НС1. Это же отношение подтверждено в работе [906]. Считается [406] также, что вначале две молекулы тиомочевины восстанавливают Au(III) до Au(I), а в точке эквивалентности образуется комплексное соединение состава [Au(S N2H4)] . Ратке [1344] элементным анализом сульфида золота, полученного разложением его тиомочевинного комплекса показал, что в комплексе золото имеет степень окисления +1. [c.35]

    Как видно из рис. 20, наибольшая разность в поглощении комплекса наблюдается при 600 нм [50]. Фотометрируют при 595 нм [50, 51] по уменьшению интенсивности окраски кислотного хром темно-синего. Окраска развивается сразу же после сливания растворов и устойчива в течение 90 мин. 655, 1316]. Чувствительность реакции 1,4-10" г мл раствора [50]. Закон Бера для растворов комплексного соединения кальция с кислотным хром темно-синим не соблюдается (оптическая плотность уменьшается с увеличением концентрации кальция) [50]. Повышение pH приводит к уменьшению чувствительности (рис. 21). Оптимальное количество щелочи —5-мл 10%-ного раствора Ка0н/100.Л4Л [50]. При фотометрическом определении кальция используют 0,02%-ный водный раствор кислотного хром темно-синего [50, 51]. Водные растворы реагента устойчивы несколько недель [50]. Определению [c.99]

    После растворения пробы в раствор добавляют борную кислоту для связывания фторид-ионов, а титан окисляют перманганатом. Для образования кремнемолибдата вводят молибдат аммония. При этом выпадает белый осадок молибдата титана. Кремнемолибдат образуется в растворе, 0,05 н. по серной кислоте. При такой кислотности реакция заканчивается через 5 мин. При более высокой концентрации кислоты реакция протекает медленнее. Например, если нормальность раствора по кислоте больше 1, то для завершения реакции требуется 1 ч. Но если комплекс образовался, то повышение кислотности раствора не влияет на его устойчивость. Поэтому перед восстановлением кремнемолибдата в раствор добавляют серную кислоту, чтобы повысить кислотность до 2,5 н. При такой высокой кислотности осадок молибдата титана растворяется и предотвращается восстановление молибдата до темно-синего комплексного соединения. [c.87]


Смотреть страницы где упоминается термин Комплексные соединения Комплексы кислотность: [c.116]    [c.28]    [c.263]    [c.248]    [c.465]    [c.72]    [c.278]    [c.284]    [c.79]    [c.80]    [c.123]    [c.42]    [c.186]    [c.79]    [c.80]   
Основы общей химии Том 3 (1970) -- [ c.249 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексные комплексы



© 2025 chem21.info Реклама на сайте