Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кремний связь с кислородом

    Энергия связи 51—О (461 33 кДж/моль) гораздо выше, чем у связей С—С и С—О (335 4-356 кДж/моль), а ее полярность 1 = (4,35,0) 10 ° Кл-м намного меньше вычисленной из электроотрицательностей кремния и кислорода, хотя и выше полярности связи С—О [д, = (3,03,7) 10 ° Кл-м. Длина связи (0,163 нм) ца (Ц)2 нм меньше суммы ковалентных радиусов 51 и О. В силоксанах угол связи 51—О—51 (130—160°) значительно больше обычного валентного угла кислорода в 5/ -гибридизации (109°) и не является жестким. Электронодонорные свойства кислорода в них заметно ослаблены по сравнению с их углеродными аналогами. Эти аномалии объясняются участием р-электронов си-локсанового кислорода и вакантных З -орбиталей кремния в Рл — л-сопряжении, которое усиливается под влиянием электроноакцепторных и ослабляется под влиянием электронодонорных заместителей у кремния. Оно не препятствует свободному вращению вокруг связи 51—О, потенциальный барьер которого очень мал (не более нескольких десятых килоджоуля на моль). В цикло- [c.462]


    Атомы кремния и кислорода связаны в этой структуре полярными связями. [c.96]

    У кварцевого стекла основная структурная единица — кремнекислородный тетраэдр. Тетраэдрическая координация кремния по кислороду обусловлена величиной отношения ионных радиусов кремния и кислорода, равной 0,29. Как известно, четверная координация катиона наиболее устойчива в пределах / к// о = 0,225—0,414. Расстояние Si—О равно О, 162 нм, а расстояние 0—0 — 0,265 нм. Угол внутри тетраэдра О—Si—О составляет примерно 109—110°. Связь Si—О преимущественно ковалентная, причем ири переходе от кристаллических веществ к стеклообразным степень ковалентности может повышаться с 50 до 80%. [c.201]

    Вторая особенность элементоорганических соединений заключается в том, что прочность высокополярных химических связей ряда элементов больше прочности соответствующих связей углерода. Особенно наглядно это видно для связей кремния с кислородом (см. данные табл. 4.6 и объяснение причин в разд. 4.5.7). [c.587]

    Свойства полисилоксанов в значительной степени определяются свойствами силоксановой группировки. Связь кремния с кислородом отличается большей термической стабильностью, чем органических полимеров, что определяется большей энергией образования связи. Так, энергия связи 81—О равна 89 ккал моль, а энергия [c.150]

    Многочисленные силикаты и алюмосиликаты (кремний образует около тысячи минералов) имеют различный состав и строение, но обладают одним общим и существенным свойством кремний всегда входит в анионную часть силикатов в виде анионов 510 , имеющих тетраэдрическое строение. Это означает, что в природных силикатах атомы кремния всегда непосредственно связаны с атомами кислорода и в их основе лежат каркасы, построенные из чередующихся атомов кремния и кислорода. [c.101]

    Элементарной структурной ячейкой силикатов является кремнекислородный тетраэдр такие тетраэдры могут образовывать циклические, цепные, листовые и трехмерные каркасные структуры. Часть атомов кремния способна замещаться алюминием, но при этом компенсация заряда требует введения дополнительных катионов, что приводит к усилению электростатического вклада в химическую связь кристалла. На примере силикатов иллюстрируются четыре из пяти типов связи, обсуждавшихся в данной главе ковалентная связь между атомами кремния и кислородом в тетраэдрах, вандерваальсовы силы между силикатными листами в тальке, ионное притяжение между заряженными листами и цепочками, а также водородные связи между молекулами воды и силикатными атомами кислорода в глинах. Если включить в этот перечень еще никелевые катализаторы на глиняном носителе, то мы охватим и пятый тип химической связи (металлический). [c.640]

    В кислородных соединениях кремния связи значительно более прочные, чем в соединениях углерода с кислородом, что объясняется особенностями строения диоксида кремния и силикатов. Структурные единицы кристаллического диоксида кремния, как и многих кристаллических силикатов, представляют собой тетраэдры, [c.200]

    Следовательно, в силикатных структурах кремний окружен четырьмя ионами кислорода, образуя тетраэдрическую группу [5104]Форма и размеры кремнекислородного тетраэдра в различных структурах изменяются незначительно. Расстояние между атомами кремния и кислорода около 0,16, а между соседними атомами кислорода 0,255—0,27 нм. Связь 51—О является промежуточной между чисто ионной и чисто ковалентной, т. е. имеет смешанный характер. Степень ковалентности связи 51—О, вычисленная из соотношения величин электроотрицательности элементов, составляет 50%. Ковалентность связи 51—О обусловливает ее сравнительно высокую прочность и направленность. [c.177]


    Реакции (9.116) — (9.119) не являются элементарными стадиями, а лишь записью брутто-процесса. Если говорить об элементарных стадиях, то надо предположить последовательное действие атомов фтора или радикалов. В случае двуокиси кремния такую последовательность даже трудно представить, поскольку отрыв сразу двух атомов кислорода маловероятен при ударе любого радикала. А отрыв одного атома дает окись кремния. Связь кислорода с кремнием в ней (185 ккал/моль) больше, чем связь кремния с фтором (135 ккал/моль), так что последовательный отрыв представляется весьма проблематичным. [c.275]

    Кремнезем 5102 принципиально отличается по свойствам от аналогичного ему по составу углекислого газа СО2. Кремнезем — твердое, очень тугоплавкое кристаллическое вещество, нерастворимое в воде и не вступающее с ней во взаимодействие. Причина столь резкого различия в свойствах СО2 и 5102 заключается в том, что кремний не образует с кислородом молекулы 51 02. Если бы такие молекулы существовали, им следовало бы приписать аналогичную СО2 структурную формулу 0 = 51 = 0, где л-связи должны быть образованы за счет р-орбиталей кремния и кислорода, как и у СО2. Однако вследствие того что радиус кремния больше радиуса углерода, кремний я-связей образовывать не может не только друг с другом, но и с атомами других элементов. Поэтому в ЗЮг кремний связан с кислородом только а-связями за счет перекрывания своих 5р -гибридных орбиталей с р-орбиталями кислорода. Значит, кремнезем имеет пространственную атомную решетку, в которой каждый атом кремния окружен четырьмя атомами кислорода, расположенными вокруг кремния под тетраэдрическими углами. Координационное число крем- [c.250]

    Особенностями рассматриваемых молекул является то, что длины связей 81—0, 81—С1 и 81-С оказались меньше по сравнению с суммой атомных радиусов. Естественно предположить, что связи кремния с кислородом, хлором и углеродом не являются чисто ковалентными. [c.211]

    Поглощение, обусловленное несовершенствами, может в принципе наблюдаться (и в действительности наблюдается) при любых длинах волн, превосходящих край основной полосы. Однако в инфракрасной области спектра наблюдают еще и характеристическое поглощение, определяемое химическими связями, например типа Si—О или Si—С, в кремнии, содержащем кислород или углерод, а также поглощение на колебаниях решетки и так называемое поглощение свободными носителями, обусловленное переходами носителей между соседними состояниями в пределах зоны проводимости или валентной зоны. Наблюдаются также различные переходы свободных носителей заряда. Рассмотренные выше явления в микрообъектах представляют лишь незначительную часть всех известных размерных эффектов. Более полное представление об исследованных размерных эффектах читатель может получить из монографий и обзоров [2, 3, 7—9]. [c.503]

    В полимерных молекулах силикатов кремний и кислород основных цепей связаны между собой ковалентной связью, но часто кислород использует свою вторую валентность на образование ионной связи с катионом металла, и это придает соответствующий заряд аниону в [c.110]

    В образовании гетероцепных полимерных соединений может участвовать значительно большее число элементов. Значения энергий связи между атомами в гетероцепных соединениях выше, чем во Многих гомоцепных соединениях (см. табл. 2). Особенно прочные связи образует бор с кислородом и азотом, кремний с кислородом. [c.24]

    На рис. 1.7 представлены структуры ионов 8104 и 81207 . Для силикатов характерно соединение таких анионов в более сложные системы путем образования кислородного мостика между атомами кремния. В этом случае два кислородных атома связывают каждый данный атом кремния с двумя атомами кремния два других атома кислорода, приходящиеся на каждый атом кремния, связаны ионной связью с катионами металла и придают [c.28]

    Физические и химические свойства двуокиси кремния указывают на значительную прочность ее кристаллической решетки, чем она существенно отличается от двуокиси углерода. Это резкое различие обусловлено полимерностью двуокиси кремния. В узлах ее кристаллической решетки находятся не молекулы, а с определенным чередованием атомы кремния и кислорода, соединенные между собой прочными ковалентными связями. [c.197]

    Например, для образования двуокиси кремния (или германия) необходимо разрушить химические связи между атомами кремния в кристалле и атомами кислорода в молекуле этого элемента, а затем получить новые химические связи между атомами кремния и кислорода. Из сказанного понятно, что сами по себе энергии химической связи никоим образом не характеризуют устойчивость или прочность данного соединения. Так, энергия связи между германием и кислородом равна 3,8 эв, а между германием и водородом 3,3 эв, в то время как тепловые эффекты образования двуокиси и гидрида равны соответственно 6,08 и 0,3 эв. [c.102]

    Существенное отличие химии кремния от химии углерода обусловлено прежде всего относительно малой прочностью связей Si—Si. Поэтому цепочки из атомов Si разрываются гораздо легче, чем углеродные, особенно если имеется возможность образования наиболее характерной для кремния связи с кислородом. Прямым следствием является резкое уменьшение числа устойчивых кремниевых соединений по сравнению с углеродными. Последнее в свою очередь косвенно отражается на сравнительном многообразий органического и минерального мира  [c.607]

    Способность стекол и многих полимеров затвердевать в аморфном состоянии связана с особенностями их химического строения. Для стекол (силикатных, боратных и др.) характерно образование пространственной сетки связей. В случае силикатных стекол определяющим структуру фактором является способность оксида 5102 создавать простирающуюся по всему объему сетку связей, в которой каждый атом кремния соединен с четырьмя атомами кислорода, расположенными в вершинах тетраэдра (атом кремния в центре), а каждый атом кислорода соединен с двумя атомами кремния (мостиковый кислород). Тетраэдры имеют общие вершины. В кристаллическом кварце тетраэдры образуют регулярную периодическую структуру, а в стеклообразном сохраняется локальная упорядоченность, но периодичность и регулярность структуры пропадают. [c.195]

    Характерно, что в случае силоксанов длина связи 51—0 совпадает с суммой радиусов атомов кремния и кислорода при двойной связи между ними. При этом каждый атом кислорода связан с двумя атомами кремния, находящимися от него на одинаковом расстоянии. Такая координация возможна при условии, если в связь с атомами кремния вовлечены две неподеленные пары 2р-электронов атома кислорода. При этом образуются донорно-акцепторные 2р —-связи, усиливающие ковалентные а-связи 51 — О. Это в свою очередь приводит к увеличению валентного угла 51 — О — 51, поскольку двойные связи занимают около центрального атома больше места, чем одинарные. Структура чистого кремния тетраэдрическая. Валентный угол равен 109°28. Из кривых распределения электронной плотности следует, что молекулы линейных силоксанов представляют собой цепочки. ..51 — [c.215]

    Положение четвертого максимума соответствует расстояниям кремний — второй кислород, а пятого максимума — расстояниям кремний — второй кремний и кислород — второй кислород при полной разупорядоченности ориентаций тетраэдров вокруг направления связей 51—0. [c.316]


    Физические и химические свойства диоксида кремния указывают на значительную прочность его кристаллической рен1етки в отличие от диоксида углерода. Это отличие обусловлено нолимер-ностью диоксида кремния (510.2) . В узлах решетки находятся ие молекулы (как у СО2), а атомы кремния и кислорода с определенным чередованием, соединенные между собой прочными ковалентными связями. [c.296]

    Как показано в табл. 63, силиконовые масла отличаются более высокой температурой вспышки и низкой температурой застывания, чем нефтяные масла той же вязкости. Высокая температура вспышки соединяется с невоспламеняемостью и огнестойкостью силиконов, что связано С большой долей негорючих элементов — кремния и кислорода — в их структуре. [c.239]

    В соответствии с представлениями физики и химии твердого тела, подтвержденными рядом исследований, кремнезем следует рассматривать как неорганический полимер, состоящий из атомов кремния, расположенных в центрах тетраэдров, в вершинах которых находятся атомы кислорода. Каждый атом кислорода связан с двумя атомами кремния ковалентными направленными связями и является обш,им для двух соседних тетраэдров Размеры атомов кремния и кислорода составляют приблизительно — 0,10 и 0,06 нм, а их эффективные заряды не превышают соответствеино +2е и —1е. Здесь мы вынуждены указать на некоторую непоследовательность автора, который, признавая преимущественно ковалентный характер связи —О (см. стр. 43), говорит о больших размерах иона кислорода н малых ионах кремния, что характерно для ионной модели. Координационное число всех модификаций кремнезема, кроме стишовита, равно четырем, что определяет неплотную упаковку атомов. Молекулы воды также имеют тетраэдрическое строение, определяемое наличием сильно выраженной водородной связи. Расстояние О—Н равно 0,1 им, а О—Н. ..О 0,276 нм.— Прим. ред. [c.13]

    Атом галоида весьма непрочно связан как в четыреххлористом кремнии, так и в хлорсиланах, поэтому подобные соединения легко гидролизуются. Однако при гидролизе происходит не замещение хлора ОН-группами, а полная дегидратация. В то время как галоид весьма непрочно связан с атомом кремния, связь кремния с атомами углерода или кислорода чрезвычайно прочна этим.объясняются исключительные свойства соединений группы силиконов. При гидролизе триалкилхлор-силана высокополимерные вещества не образуются, так как подобные соединения еще неспособны к образованию пространственных цепей  [c.208]

    В этом случае два кислородных атома связывают каждый данный атом кремния с двумя другими атомами кремния два других атома кислорода н 1 каждый атом кремния связаны ионной связью с катионами металла и придаюг соответствующий, заряд аниону в целом. Такие цепочки могут достигать значительных размеров и должны рассматриваться как гигантские анионы. В крн- [c.133]

    Физические и химические свойства 8 0г указывают на значительную прочность его кристаллической решетки, чем он существенно отличается от СО . Это резкое различие обусловлено полимерностью оксида кремния (IV). В узлах его кристаллической ре-1нетки находятся не молекулы, а чередуются атомы кремния и кислорода, соединенные ме жду собой прочными ковалентными связями. [c.358]

    Силикаты — солеобразные химические соединения, содержащие кремнийкислородные кислотные остатки различного состава (81 0т). Они часто имеют очень сложное строение. Основа всех силикатов — кремнийкислородный тетраэдр [8104], в центре которого расположен атом кремния, а в вершинах — атомы кис. аорода. Тетраэдры [8104] могут сочленяться через вершину, ребро или грань. Число таких сочетаний и пространственное расположение определяет структурный мотив силиката. Во всех случаях атомы кремния связаны друг с другом через атомы кислорода цепочки —81—О—81 — очень прочны. [c.138]

    СИЛОКСАНЫ — высокомолекулярные соединения, содержащие чередующиеся атомы кремния и кислорода, кроме этого, атомы кремния связаны с органическими радикалами, водородом, галогенами и т. п. Низшие линейные алкилсилокса-ны — бесцветные прозрачные жидкости различной вязкости, нерастворимые в воде. Высокомолекулярные диметилполи-силоксаны — очень вязкие жидкости, которые могут быть вулканизированы органическими пероксидами в резиноподобные эластомеры. Циклические диалкил-силоксаны — твердые кристаллические продукты. С. применяют в качестве полупроводников для получения силоксан-каучуков, масел и др. После вулканизации силоксан-каучуков нз них изготов- [c.227]

    В состав природных и технических силикатов кроме кремния и кислорода входят и другие элементы. Из них важнейшую роль играет алюминий. Алюминий может содержаться в силикатах в двух формах. В одних он находится в виде катиона (силикаты алюминия), в других — входит в состав аниона (алюмосиликаты). В последнем случае (наиболее распространенном) атомы алюминия замещают атомы кремния в тетраэдрах [5104] ". р -Гибридизация орбиталей атома алюминия, соответствующая тетраэдрической группировке [А1О4], стабильна только в присутствии щелочных ионов. При этом связь [Ме+—(А104)] является делокализованной. [c.27]

    Химические связи в галогенидах германия и кремния являются насыщенными, полярными. Из-за одновалентности галогенов и насыщенного характера связей внутри молекулы ОеГ4, между отдельными молекулами типа ОеГ4 могут действовать только молекулярные, но не валентные силы. Межмолекулярные силы обычно значительно слабее валентных химических связей (см. 9), и поэтому галогениды германия и кремния уже при невысоких температурах (от 200 до ТОО"" К) распадаются на отдельные молекулы, т. е. переходят в газообразное состояние. В этом отношении галогениды принципиально отличаются от соединений германия и кремния с кислородом. Действительно, вследствие двухвалентности кислорода могут образовываться твердые тела, все атомы которых связаны между собой химическими связями. Такая возможность отсутствует у галогенидов, обладающих повышенной летучестью, т. е. способностью к испарению [c.97]

    ТИ применяют в технике в качестве гидравлических и амортизационных масел, масел для диффузионных вакуумных насосов, для получения морозе- и теплостойких консистентных смазок в качестве пропиточного материала для конденсаторов и т. д. Их свойства объясняют прочностью связей кремния с кислородом, составом и строением молекул. Для сравнения укажем энергия связи 51 — О равна 443,08 кДж/моль, тогда как для 51 — С она составляет 326,04 кДж/моль. Это различие считается большим. Представителями кремнийорганических соединений являются жидкие линейные и циклические метил- и этилсилоксаны. Исследование их структуры впервые было проведено А. Ф. Скрышевским совместно с Ю. В. Пасечником и В. П. Клочковым. [c.214]

    Отличие химии кремния от углерода в основном обусловлено большими размерами его атома и возможностью использования свободных Зй-орбиталей. Из-за дополнительного связывания (по донорно-акцепторному механизму) связи кремния с кислородом 81—0—31 и фтором 51—Р (табл. 17.23) более прочны, чем у углерода, а из-за большего размера атома 51 по сравнению с атомом С связи 51—И и 51—51 менее прочны, чем у углерода. Атомы кремния практически не способны давать цепи. Аналогичный углеводородам гомологический ряд кремневодородов 51пН2я-(-2 (си-ланы) получен лишь до состава 514Ню. Из-за большего размера у атома 51 слабо выражена и способность к л-перекрыванию, поэтому не только тройные, но и двойные связи для него малохарактерны. [c.465]

    Существенной особенностью химии кремния сравнительно с химией углерода является возможность вовлечения в связеобразова-ние 3d-орбиталей. Это приводит к увеличению валентных возможностей атома кремния. Теоретически максимальная ковалентность кремния может быть равна 9 против 4 у углерода. На практике, помимо валентности 4, встречаются шести ковалентные производные, в которых атом кремния находится в sp ii -гибридном состоянии. Однако для кремния наиболее характерны структуры, где атомы кремния имеют к. ч. 4 и находятся в 5 о= -гибридном состоянии. Производные с sp- и sp -гибридизацией атома кремния редки и, как правило, мало устойчивы. Кремний в отличие от углерода менег склонен образовывать кратные связи. Для кремния наиболее характерно дополнительное Лр -связывание в отличие от Пр.р-взаимодействия для углерода. Таким образом, в случае кремния л-связывание часто возникает за счет участия вакантных 3ii-op6H-талей и неподеленных электронных пар атомов партнеров. Так обстоит дело в соединениях кремния с азотом, кислородом, фтором и хлором. Прочность связей кремния с кислородом, азотом и галогенами из-за дополнительного л-связывания выше, чем соответствующих связей для углерода. Наоборот, связь атома углерода, например, с водородом прочнее, чем у кремния, так как водород не располагает неподеленной электронной парой. Ниже для сравнения [c.198]

    Наконец, для химии кремния имеет принципиальное значение большое сродство к кислороду, что обусловлено энергией связи атомов кремния с кислородом, которая превосходит энергию связи между атомами кремния в 2,5 раза. И не случайно земная кора более чем наполовину состоит из кремнезема 5102, его гидратных форм лгЗЮа-уНаО, различных силикатных и алюмосиликатных пород. [c.199]

    Силоксановые каучуки СКТ обладают способностью сохранять свои свойства в широком температурном интервале (от —150 °С до +300 С) и при продолжительном нагревании. Высокая тем-пературостойкость каучука обусловлена наличием прочной связи кремния с кислородом в основной молекулярной цепи. Силоксановые каучуки являются хорошими диэлектриками. [c.44]

    Структура кварца очень близка к структуре кремневой кислоты H4Si04. Кремний в кремневой кислоте имеет координационное число 4 атом кремния находится в центре тетраэдра, образованного четырьмя атомами кислорода, причем к каждому атому кислорода присоединен один атом водорода. Кремневая кислота — очень слабая кислота она легко конденсируется с выделением воды. Если каждая из четырех гидроксильных групп молекулы кремневой кислоты конденсируется с аналогичными гидроксильными группами близлежащей молекулы (и при этом выделяется вода), то в результате получается структура, в которой атом кремния оказывается связанным с четырьмя окружающими атомами кремния связями кремний—кислород—кремний. Такой процесс приводит к образованию продукта конденсации, имеющего формулу 5Юг, поскольку каждый атом кремния оказывается окруженным че- [c.529]

    Широкое применение в реставрационной практике получила большая > группа кремнийорганических полимеров, основная цепь которых постро ена из атомов кремния и кислорода 81—0—81 и которые содержат ОН группы у атомов кремния — полиорганосилоксанолы. Такие полимеры < при отверждении образуют пространственную структуру в результате 1 возникновения при дальнейшей конденсации новых связей 81—О-й  [c.30]

Рис. 3.2. Структура тетраэдра 3104. а — Упаковка кремния и кислорода. Затемненный атом кремния находится ниже центрального атома кислорода, но выше трех других атомов кислорода, лежаших в одной плоскости. 6 — Тетраэдр 8104 с преувеличенной длиной связи. Рис. 3.2. Структура тетраэдра 3104. а — Упаковка кремния и кислорода. Затемненный атом кремния находится ниже центрального атома кислорода, но выше трех других атомов кислорода, лежаших в одной плоскости. 6 — Тетраэдр 8104 с преувеличенной длиной связи.
    На схематичном изображении реакции химического выветривания анортита (рис. 3.5) показан край кристалла анортита, находящийся в контакте с Н2СО3 из раствора, являющегося агентом выветривания. Природные поверхности кристаллов имеют участки с избытком электрического заряда, что вызвано дефектами кристаллической решетки (ряды атомов, немного смещенные со своих позиций) или ее повреждениями (разрыв связей). Области с избыточным зарядом преимущественно атакуются почвенными кислотами, в результате чего возникают выемки на поверхности минерала (рис. 3.6). Водородные ионы, образующиеся при диссоциации Н2СО3, гидратируют поверхность силиката. Ионные связи между Са и тетраэдрами 8104 легко разрываются, высвобождая Са в раствор. В результате образуются гидратированный силикат с дефицитом металла и раствор бикарбоната кальция (Са + + 2НСОз"). В ходе дальнейшей реакции в пределах тетраэдрической сетки могут разорваться связи, близкие к ковалентным. Тетраэдрическая сетка является особенно непрочной там, где алюминий заместил кремний, поскольку связь кислород—алюминий имеет скорее ионный характер. Продукт реакции, высвобождаемый в раствор — это [c.90]


Смотреть страницы где упоминается термин Кремний связь с кислородом: [c.304]    [c.347]    [c.234]    [c.370]    [c.513]    [c.94]    [c.91]    [c.15]   
Основы общей химии Том 3 (1970) -- [ c.244 ]




ПОИСК





Смотрите так же термины и статьи:

Связь кислород кислород



© 2025 chem21.info Реклама на сайте