Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Осмии окислительные

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]


    У рутения и осмия высшее окислительное число достигает номера группы (+8), но и бывает у рутения +4, а у осмия +6. У родия и ири- [c.343]

    При использовании каталитических количеств четырехокиси осмия в смеси трет-бутапол— пиридин И. д. вызывает окислительное гидроксилирование двойных связей [11]. [c.58]

    Одной из известных качественных реакций для открытия рения является проба на перл буры. При нагревании в восстановительном пламени перл буры окрашивается рением в черный цвет, который исчезает в окислительном пламени вследствие окисления рения до Re(VII). Используют также перл соды, который в окислительном пламени в присутствии рения окрашивается в желтый цвет. Этим методом можно определять до 0,015 мг Re [1266]. Метод пригоден для обнаружения рения в сплавах при его содержании >5% вольфрам и молибден не мешают, а хром, рубидий и осмий мешают обнаружению рения- [c.69]

    Тетрафториды рутения, осмия и иридия наиболее удобно получать восстановлением их высших фторидов. Однако в случае родия и платины, переход которых в высшие окислительные состояния требует особых условий, не составляет трудности получать эти тетрафториды прямым окислительным фторированием. [c.405]

    Из металлов только золото, платина, осмий, иридий, ниобий, тантал и вольфрам, устойчивы к действию азотной кислоты. Некоторые металлы (например, Ге, А1, Сг) пассивируются концентрированной азотной кислотой. Окислительными свойствами обладают и водные растворы азотной кислоты. [c.407]

    Оксиды и гидроксиды. Для рутения и осмия характерны оксиды с окислительными числами металлов +4 и -Ь8. Окислительное число 48 у Ки и Оз, являющихся аналогами Ре (см. периодическую систему Д. И. Менделеева), объясняется тем, что у этих элементов имеется свободный подуровень / (5/, 6/), позволяющий при возбуждении атома появляться 8 непарным электронам. [c.145]

    С тех пор, как рений стал сравнительно доступным элементом, многие исследователи принялись изучать его каталитические свойства. Рений имеет незаполненную 4й-оболочку, в периодической системе он находится между вольфрамом и осмием (активными катализаторами), порошок рения хорошо поглощает водород, не образуя при этом химического соединения все эти свойства давали основания предполагать, что рениевые катализаторы могут быть достаточно активными в окислительно-восстановительных реакциях. [c.93]

    Окислительные свойства оксорутенатов (VI) (оранжевого цвета) выражены менее отчетливо, но все же они окисляют концентрированную соляную кислоту. В соответствии с устойчивой степенью окисления осмия гидроксодиоксоос-маты (VI) (розового цвета), наоборот, довольно легко окисляются до OSO4  [c.592]

    Как видно из табл. 64, у атома железа нет вакантных подуровней, что ограничивает возможность возбуждения его электронов у атома Ни весь подуровень 4/ свободен, у атома Оз два свободных подуровня 5/ и 5 . Поэтому высшее окислительное число железа +6, а рутения и осмия +8. Достройкой электронны.х уровней у атомов -металлов в конечном итоге определяются физические и химические свойства. -Металлы широко используются в качестве конструкционных материалов. Медь, железо, золото и серебро были известны ещ,е в глубокой древности. Давно используются в технике такие металлы, как 2п, N1, Со, Мп, Сг и . Но в последние десятилетия вовлечены в сферу применения Т , 2г, V, ЫЬ, Та, Мо, Ке и платиновые металлы. Современные методы металлургии позволили получать эти металлы высокой степени чистоты. Большинство -металлов было открыто еще в прошлом веке. И только технеций и рений открыты в нашем столетии (Не — в 1924 г. Идой и Вальтером Ноддак Тс — в 1937 г. из молибдена в результате ядерной реакции). Использование -металлов в качестве конструкционных материалов в современной технике позволило решить ряд сложных технических проблем. [c.322]


    Переведение платиновых металлов в раствор при анализе и переработке сложных по составу материалов и концентратов остается одним из трудоемких и экологически опасных этапов. Эта операция, как правило, включает окислительное спекание или сплавление и последующую обработку спеков царской водкой, концентрированными серной и азотной кислотами при нагревании, хлорированием в соляной кислоте и др. Наибольшие трудности возникают при переведении в раствор материалов, содержащих родий, иридий, рутений и осмий. [c.88]

    Другой прием, используемый для активации пирролов в реакциях циклоприсоединения, заключается в предварительном превращении их в осмиевые комплексы [100]. При такой активации возможны реакции даже с обычными электрофилами в мягких условиях соответствующие аддукты образуются в результате последующего окислительного разрушения комплекса с осмием [101]. [c.327]

    Тенденция к повышенной устойчивости высоких степеней окисления особенно резко проявляется в 8-й группе рутений и осмий имеют высшую степень окисления +8, а железо - только +6. Рутений и осмий образуют тетраоксиды КиО и ОзО , которые представляют собой типичные молекулярные соединения (температуры плавления 25 и 40 °С соответственно) с заметными окислительными свойствами. В то же время оксиды МО, характерные почти для всех элементов первого переходного ряда, отсутствуют в третьем ряду. [c.368]

    При использовании в качестве восстановителя Аз , а в качестве окислителя Се " в серной кислоте наблюдается прямо противоположная картина. Окислительная форма индикатора, ферроин, почти не восстанавливается избытком Аз даже в присутствии катализатора — четырехокиси осмия. В то же время добавление лишь одной капли раствора Се быстро вызывает появление красной окраски (ферроина) — совершенно очевидно, в результате индуцированного восстановления. В соляной кислоте индуцированного восстановления не происходит и титрование провести не удается, так как ферроин окисляется первой же каплей Се . Небольшие количества хлорид-ионов (например, [c.374]

    Существуют два типа окислительных реакций непредельных углеводородов 1) прямая атака двойных или тройных связей электрофиль-пыми реагентами, например озоном, фотосенсибилизированным молекулярным кислородом, органическими перкислотами, свободными гидроксильными радикалами, активированной светом перекисью водорода или различными неорганическими перекисями, способными образовывать неорганические перкислоты, перманганатом, неорганическими окислами, такими как четырехокись осмия, пятиокись ванадия, окись хрома и двуокись марганца, солями ртути, иодобензоатом серебра, диазоуксусным эфиром и подобными веществами 2) косвенная атака метиленовых групп, смежных с двойными и тройными связями и с ароматическими ядрами, такими реагентами, как молекулярный кислород, органические перекиси, двуокись селена, тетраацетат свинца,хлористый хромил, трет-бутил-хромат, бромсукцинимид и т. д. Первый тип реакций протекает по ионному механизму, второй — по свободнорадикальному механизму. Некоторые из этих реакций будут рассмотрены в следующих разделах. [c.347]

    Октафторид осмия проявляет резко выраженные окислительные свойства. Водой ои иостеиенио разлагается на тетраоксид осмия и фтористый водород  [c.698]

    Еще более наглядно можно показать созидательную роль деструктивных реакций на примере окислительного расщепления олефинов. Один из наиболее часто используемых для этой цели методов включает последователь-ност] из двух реакций специфическое окисление олефина тетроксидом осмия, ведугцее к образованию вицинального 1 ггс-гликоля и последуюп1 ее окисление гликоля перйодатом или тетраацетатом. Посмотрим, что может дать использование этой последовательности на простейшем модельном примере расщспленпя циклогексена. [c.202]

    Обладая резко выраженными окислительными свойствами, OSO4 энергично реагирует с органическими веществами, восстанавливаясь при этом до черного диоксида осмия ОзОг. На этом основано применение OSO4 для окрашивания микроскопических препаратов. [c.530]

    Рутений и осмий реагируют со щелочами в присутствии сильных окислителей, образуя рутенаты и осматы (КгРи04 и К20з04), в которых эти металлы проявляют окислительное число +6. [c.144]

    Из металлов только золото, платина, осмий, иридий, ниобий, тантал и вольфрам устойчивы к действию азотной кислоты. Некоторые металлы (например. Ре, А1, Сг) пассивируются концентрированной азотной кислотой. Окислительными свойствами обладают и водные растворы азотной кислоты. Обычно процесс восстановления HNOз протекает в нескольких параллельных направлениях и в результате получается смесь различных продуктов восстановления. Природа этих продуктов, их относительное содержание в смеси зависят от силы восстановителя, концентрации азотной кислоты и температуры. Рис. 48 иллюстрирует относительное содержание продуктов восстановления азотной кислоты железом в зависимости от ее концентрации. [c.263]

    Галогениды, отвечающие степеням окисления элементов +5 и выше, известны только для фтора (ЭР5, ЭРв, ЭРв). Эти фториды легкоплавки и летучи. Они представляют собой типичные молекулярные структуры, причем с повышением степени окисления элемента температуры плавления закономерно уменьшаются, что свидетельствует о нарастании ковалентного внутримолекулярного и ослаблении межмолекулярного взаимодействия. PtPe является сильнейшим окислителем, в то время как OsPo и даже OsP окислительными свойствами не обладают. Октафторид осмия гидролизуется с образованием OSO4  [c.422]

    Сульфитные системы, содержащие осмий, образуются в автоклавноангидридной технологии переработки пирротиновых концентратов при выщелачивании ДИОКСИДОМ серы промпродуктов, а также в процессах обработки ЗОз окислснной пульпы после автоклавно-окислительного выщелачивания исходного сырья. Сложная химия [c.84]

    Кук и Шентол [28] и Баджер [4, 5], основываясь на обнаруженной Криги [31] способности четырехокиси осмия гидро-ксилировать фенантрен в положении 9, 10, изучили действие этого реагента на другие полициклические ароматические углеводороды, содержащие скелет фенантрена, и на антрацен. Реакция протекает медленнее, чем с этиленовыми соединениями, причем атакуются наиболее реакционноспособные связи ароматического характера. Эта реакция резко отличается от атаки ионными реагентами, направленной на наиболее ре к-ционноспособные центры молекулы, и имеет теоретическое значение для изучения характера двойной связи в полициклических соединениях [4, 5]. Результаты окисления ароматических углеводородов четырехокисью осмия представляют особый интерес, так как образующиеся продукты напоминают продукты окислительного метаболизма указанных углеводородов [28]. Гликоли, приведенные в табл. 6, получены из указанных углеводородов [4, 5, 28, 76]. [c.124]

    БСФТ предложен для экстракционно-спектрофотометрического определения осмия (VI, VIII) в щелочном окислительном плаве осмия и рутения [ 6, 7]. [c.50]

    БСБА предложен для зкстракционно-спектрофотометрического определения осмия (VI) в продуктах щелочного окислительного плава осмия. [c.51]

    La+ Ti+ Zr Ht V Nb Ta r , Mo+ , W+ , Re" Ru" , Os" ), d r , Mo , Mn" Re" , Fe" ), 10 (Qu+i Ag" Zn" d" Hg" , Pd ). Для образования связей в первую очередь используются внешние s-элек-троны, а затем часть или все -электроны. Это обусловливает многообразие степеней окисления -элементов и соответственно широкий спектр окислительно-восстановительных и кислотно-основных свойств. Во всех группах, кроме VIIIB, высшая валентность отвечает номеру подгруппы (или группы в коротком варианте Периодической системы). В VHIB подгруппе устойчивые соединения со степенью окисления +8 получены только для рутения и осмия, для остальных элементов [c.171]


    Ири использовании каталитических количеств четырехокиси осмия в смеси трет-бутанол— пиридин И. д. вызывает окислительное гидроксилированпе двойных связей [111. [c.58]

    Существует ряд окислительных реагентов, с помощью которых в мягких условиях возможно присоединение двух групп ОН к алкенам. При окислении оксидом осмия (VIII) или водным раствором перманганата калия образуются гликоли - вицинальные двухатомные спирты (диолы). [c.86]

    Использование тетраоксида осмия вместе с перйодатом натрия приводит к расщеплению двойной углерод-углеродной связи, и образованию кетонов и альдегидов [18, 68]. В этом случае сначала 0з04 присоединяется к двойной связи с образованием осмата, последующее окислительное расщепление которого перйодатом натрия приводит к двум карбонильным соединениям [схема (8.30)]. При этом образуется триоксид осмия, но в присутствии избытка перйодата он окисляется до тетраок-свда. Как правило, реакцию проводят в таких растворителях, [c.338]

    Перли и Годшелк [84] описали модифицированный кислородный электрод, с помощью которого можно измерить pH в растворах, свободных от различных окислительно-восстановительных систем. Он представляет собой металлический электрод, покрытый плотным слоем иридия, рения, осмия или рутения. Электрод не должен содержать окклюдированного водорода. Как утверждают авторы, потенциал, измеренный относительно каломельного электрода, линейно зависит от pH в интервале 0—14 ед. pH в растворах, содержащих молекулярный кислород. Потенциал воспроизводим при температурах О—100° С. [c.230]


Смотреть страницы где упоминается термин Осмии окислительные: [c.369]    [c.697]    [c.160]    [c.381]    [c.452]    [c.264]    [c.87]    [c.165]    [c.457]    [c.914]    [c.324]    [c.224]    [c.427]    [c.292]    [c.264]    [c.48]    [c.498]   
Основы общей химии Том 3 (1970) -- [ c.195 ]




ПОИСК





Смотрите так же термины и статьи:

Осмий

Осмий осмий



© 2025 chem21.info Реклама на сайте