Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рубидий паров

    Элементы первой группы — литий, натрий, калий, рубидий и цезий— мягкие серебристо-белые металлы, отличающиеся высокой химической активностью. Эти металлы — прекрасные проводники электричества. Некоторые их физические свойства приведены в табл. 18.1. Данные таблицы показывают легкоплавкость перечисленных металлов четыре металла из пяти плавятся ниже температуры кипения воды. Литий, натрий и калий легче во/ды. Пары щелочных металлов состоят пре- [c.518]

    Если внести в пламя газовой горелки соль ще.лочного металла, то она разлагается, и пары освободившегося металла окрашивают пламя в характерный для данного металла цвет. Литий окрашивает пламя в карминово-красный цвет, натрий — в желтый, калий — в фиолетовый, рубидий — в красный, цезий — в голубой. Таким путем можно обнаружить эти элементы в соответствующей пробе. [c.384]


    Эта реакция экзотермична и за счет выделяющегося тепла происходит воспламенение водорода и металла, что характерно для наиболее активных калия, рубидия и цезия. Реакция с натрием протекает менее интенсивно и сопровождается лишь плавлением металла на поверхности воды. Литий, как наиболее слабый восстановитель, реагирует с водой еще менее активно, чем натрий, что объясняется наименьшим межатомным расстоянием в кристаллической решетке (см. рис. 7), хотя по величине электродного потенциала литий стоит впереди других щелочных металлов. Водяные пары подобным же образом взаимодействуют со щелочными металлами. [c.36]

    Какой из каждой пары указанных металлов образует более типичное основание а) литий или рубидий б) калий пли медь в) кальций или барий г) цезий или золото  [c.39]

    Так как при электролизе соединений калия выход его по току сравнительно невелик, то металлический калий предпочитают получать из расплавленного гидроксида калия пропусканием через него при 700° С паров металлического натрия. Рубидий и цезий получают восстановлением их хлоридов металлическим кальцием при 700—800 в вакууме  [c.42]

    Растворы металлов К, Rb, s в жидком аммиаке принимают синий цвет. Как пары самих щелочных металлов, так и их летучие соли, окрашивают бесцветное пламя газовой горелки в характерные для них цвета литий — в карминово-красный, натрий — в ярко-желтый, калий, рубидий и цезий — в фиолетовый. Это свойство используется в качественном анализе для их открытия. [c.232]

    Исследовалось влияние добавок фторидов натрия, лития, рубидия, цезия к бифториду калия на физико-химические свойства последнего. Оказалось, что добавки ЫаР, Ь1Р, КЬР, СзР мало влияют на температуру плавления, плотность и электропроводность электролита и на уменьшение давления паров НР над ним. А так как всякое усложнение состава электролита вызывает дополнительные усложнения в контроле его и поддержании состава при электролизе, то существенных технико-экономических преимуществ подобные добавки к электролиту не дают. [c.332]

    Твердые рубидий и цезий — одноатомные металлы. При сильном охлаждении кристаллизуются в кубической объемно-центрированной решетке [14] при 5°К значение а соответственно 5,585 и 6,045 A [2, 10, 15]. Температура плавления соответственно 39,0 и 28,5°, температура кипения 705 и 688° [2]. Летучесть их на воздухе значительна давление пара (мм рт. ст.) рубидия — 1 (294°), 100 (519°), 200 (569°), 400 (628°), 760 (705°), цезия 1 (278°), 100 (515°), 200 (570°), 400 (635°), 760 (688°) [10]. Оба весьма пластичные металлы твердость по Моосу соответственно 0,3 и 0,2 [10]. Их пары зеленовато-синие. Данных о составе пара нет. [c.84]

    Соединения с кислородом. Рубидий и цезий в зависимости от условий их окисления образуют с кислородом окиси МеаО, перекиси МеаОг, триоксиды Ме4(Ог)з, надперекиси МеОг и озониды МеОз- При сгорании металлов на воздухе или в кислороде образуются МеОа, всегда содержащие примеси Ме4(Ог)з и МедОг. Все упомянутые кислородсодержащие соединения рубидия и цезия энергично взаимодействуют с парами воды и двуокисью углерода из воздуха, а надперекиси и озониды окисляют органические вещества с воспламенением или взрывом, вследствие чего требуют хранения в герметичной таре 26]. Изучены кислородные соединения рубидия и цезия недостаточно. [c.85]

    Озониды рубидия и цезия — очень сильные окислители. Крайне неустойчивы к действию паров воды и СОа из воздуха. С водой реагируют бурно [10]  [c.86]

    При переработке поллуцита, литиевых и калиевых минералов, радиоактивных отходов и других сырьевых источников получают рубидиево-цезиевые, цезиево-рубидиевые и рубидиево-калиевые концентраты в виде квасцов, хлоридов, сульфатов, карбонатов и других солей. Такие концентраты содержат примеси К, На, Mg. Са, 81, А1, Ре, Сг, Т1 и других элементов. Из них калий наиболее близок по химическим свойствам к рубидию и цезию, поэтому их разделение (особенно пары калий — рубидий) — самая трудная проблема в технологии получения чистых солей рубидия и цезия. В связи с этим в дальнейшем будут в основном рассмотрены методы, связанные с решением упомянутой проблемы, а также возможность удаления других примесей. [c.138]


    Эти радикалы реагируют с паром рубидия вокруг стеклянной части , давая ион рубидия  [c.253]

    Пары рубидия и цезия интенсивно окрашены в зеленовато-синий цвет. [c.75]

    Гидриды рубидия и цезия в достаточно чистом состоянии получают путем гидрирования (давление 50—100 атм, температура 200—350° С) чистых металлов водородом, тщательно очищенным от примесей кислорода и паров воды. Для ускорения реакции и снижения температуры гидрирования рекомендуется рубидий и цезий предварительно смешивать с их тонкоизмельченными гидридами, содержащими жирные кислоты, в количестве 0,1 —1,0% от общего веса реакционной смеси. Вместо жирных кислот в реактор можно вводить (отдельно от водорода) некоторые углеводороды (изомерные цимолы, изопропилбензол, антрацен и др.). Такого рода углеводороды легко реагируют с рубидием или цезием, образуя карбиды, ускоряющие процесс гидрирования [76, 77]. [c.83]

    В термическом отношении устойчивость галогенидов рубидия и цезия падает от фторидов к иодидам, в этом же направлении возрастает их способность к сублимации. В парах хлоридов, бромидов и иодидов рубидия и цезия не обнаружено заметного количества димерных молекул. [c.92]

    Хлориды рубидия и цезия — термически устойчивые соединения, плавящиеся без разложения с незначительным улетучиванием. Упругость паров хлоридов калия, рубидия и цезия при 903—906° С составляет соответственно 0,0078 0,0248 0,0803 мм рт. ст. [156]. Было установлено [158, 159], что в сильном потоке водяного пара при 800° С летучесть хлоридов рубидия и цезия повышается, при обычном же выпаривании водных растворов этих солей никакого испарения хлоридов не наблюдается. Следует иметь в виду, что хлориды рубидия и цезия в парах воды при 550—900° С [c.96]

    Среди галогенидов щ,елочных металлов иодиды рубидия и цезия обладают при высоких температурах наибольшей упругостью пара. Например, у Сз давление пара равно 0,011 мм рт. ст. при [c.102]

    Устойчивость комплексных частиц в растворе в присутствии катионов рубидия и цезия в значительной мере зависит от ассоциации последних с комплексными анионами во внешней среде, от способности КЬ+ и Сб+ к образованию с лигандами ионных пар и ацидокомплексов. Для полностью гидратированных щелочных катионов прочность ассоциатов типа Ме+(Н20)1-Ьп в растворах также возрастает от лития к цезию [403, 404]. [c.146]

    Если процесс разложения рудного материала проводить в тонком слое без перемешивания в атмосфере водяного пара, предварительно нагретого до температуры реакции и подаваемого с такой скоростью, чтобы концентрация воды оставалась в обрабатываемой смеси практически постоянной, общее извлечение лития из руды может быть повышено до 88%. Из твердого остатка (со стадии выщелачивания) дополнительно выделяют сульфат алюминия, калиевые квасцы и соли рубидия и цезия. [c.233]

    Хлориды рубидия и цезия достаточно термически устойчивы плавятся без разложения с незначительным улетучиванием, которое наступает несколько ниже температуры их плавления [95]. Полная картина изменения давления паров МеС1 в интервале 800—1400° представлена на рис. 16 [31]. В вакууме при 440°скорость сублимации s l значительно выше, чем Rb l, и тем более выше,чем КС1. Это может представить интерес в плане разделения трех близких по свойствам щелочных металлов в виде их хлоридов [61. [c.101]

    Из перечисленных элементов калий наиболее близок по химическим свойствам к рубидию и цезию, и поэтому их разделение (особенно пары калий — рубидий) является самой трудной проблемой в технологии получения чистых солей рубидия и цезия. [c.334]

    Пары щелочных металлов (простые вещества) и сложных соединений ЩЭ имеют характерное окрашивание — карминово-красное, Ыа — желтое, К — фиолетово-розовое, НЬ — беловато-розовое, Сз — фиолетово-розовое. Как известно, окраска пламени возникает в результате температурного возбуждения атома или иона, сопровождающегося перескоком электронов на более высоко лежащие энергетические уровни. Возвращение назад (на основной уровень) сопровождается излучением энергии определенной для данного элемента длины волны или нескольких длин волн (спектр испускания). Кстати, тяжелые щелочные металлы — КЬ и Сз — были открыты спектральным методом, и их названия отражают присутствие в спектрах отдельных характеристичных линий спектр рубидия содержит, кроме других, красную линию (рубидос — красный), цезий — голубую (це-леос — небесно-голубой). [c.12]

    Реакция с галогенами сопровождается взрывом. Со взрывом идет зеакция с серой, двуокисью углерода и четыреххлористым углеродом 10]. При нагревании взаимодействуют с углеродом (графитом), красным фосфором и кремнием [10]. Выше 300° разрушают стекло, восстанавливая кремний из SIO2 и силикатов [6]. Оказывают сильное корродирующее действие на многие металлы и материалы. Гидриды их МеН образуются при нагревании расплавов в атмосфере водорода. RbH и sH менее устойчивы, чем LiH, и во влажном воздухе окисляются, воспламеняясь [10]. С азотом рубидий и цезий непосредственно не реагируют их нитриды МезЫ, получаемые взаимодействием паров металлов с азотом в поле тихого электрического разряда [6], менее устойчивы, чем LI3N. [c.84]

    Получение иодатов рубидия и цезия возможно несколькими методами обменной реакцией между иодатом бария и сульфатами рубидия и цезия сплавлением смеси иодида и хлората при температуре разложения хлората с последующим разделением образовавшихся иодата и хлората путем фракционированной кристаллизации обработкой хлором горячего концентрированного раствора смеси иодида и гидроокиси до полного выделения иодата взаимодействием гидроокиси или карбоната с HIO3 или I I3 обработкой йодноватой кислотой горячего концентрированного водного раствора хлорида растворением иода в нагретом концентрированном растворе гидроокиси и др. Наиболее технологически удобным методом получения иодатов является метод, основанный на взаимодействии иода с водным раствором хлората. Для этого хлорат рубидия или цезия растворяют при 40—45°С в воде, добавляют иод и на каждые 30 мл раствора по 1 мл концентрированной азотной кислоты. Тотчас же начинается бурная реакция с выделением хлора и небольшого количества паров иода. По окончании реакции раствор несколько упаривают для удаления растворенного хлора, затем в него добавляют иод (около 3% от количества, первона- [c.142]

    Гидриды рубидия и цезия чрезвычайно химически активные соединения. Они разлагают воду (бурно) и этанол, выделяя водород и образуя соответственно гидроокиси и алкоголяты. Уже под действием паров воды воздуха МеН окисляются, воспламеняясь. Самовоспламенение наблюдается в атмосфере фтора и хлора при этом образуются MeF и МеС1. При нагревании с азотом и аммиаком образуют амиды, с фосфором — фосфиды, с ацетяленом — ацетилиды. Обладая не только сильными восстановительными, но и каталитическими свойствами, они находят применение в реакциях конденсации и полимеризации [10]. [c.106]

    Большинство солей щелочных металлов растворимо в воде. Сульфат магния хорошо растворим (отличие от щелочноземельных металлов). Карбонат магния не осаждается в присутствии гидроокиси и хлорида аммония, поэтому не выделяется вместе с щелочноземельными металлами в виде карбоната. Растворимость карбоната магния 10 - моль л, т. е. больше, чем карбонатов Са, 5г, Ва. Щелочные металлы образуют сильные щелочи. Нитрокобальтиаты натрия, магния и щелочноземельных металлов растворимы в воде. Нет общего группового реактива на 1-ю аналитическую группу. Однако калий, аммоний, рубидий, цезий образуют малорастворимые гексанитрокобальтиаты, перхлораты, хлороплатинаты и гидротартраты. Га-логенидные соли щелочных металлов начинают испаряться только при 1000 °С их пары окрашивают пламя горелки. Соли аммония легко летучи при прокаливании и разлагаются около температуры красного каления. [c.159]


    Выработка металлических К и Li несравненно меньше, чем натрия. Литий получают электролизом расплава Li l -f K l, а калий — действием паров натрия на расплав КС1, поступающий противотоком к ним в специальных дистилляцион-ных колоннах (из верхней части которых выходят пары калия). Рубидий и цезий в больших масштабах почти не добываются. Для получения небольших количеств этих металлов удобно пользоваться нагреванием в вакууме их хлоридов с металлическим кальцием. [c.410]

    Щелочной металл. Белый, мягкий, весьма низкоплавкий. Пар рубидия окрашен в зеленовато-синий цвет. Химически растворяется в жидком NH3 (темно-синий раствор), расплаве RbOH. Чрезвычайно реакционноспособный сильнейший восстановитель. Энергично реагирует с О2 воздуха, водой (идет воспламенение металла и выделяюш,егося водорода), разбавленными кислотами, неметаллами, аммиаком, сероводородом. Не реагирует с азотом. Хорошо сохраняется лишь под слоем парафинового или вазелинового масла. С ртутью образует амальгаму. Окрашивает пламя газовой горелки в фиолетовый цвет. Получение см. 64 , 65 , 69 , 73 . [c.39]

    Значения ионных рефракций можно найти тремя способами из данных по парциальным рефракциям для растворенных солей, из опытных данных для кристаллических солей (для В-лжниж), а также рассчитать теоретически по рефракциям атомов инертных элементов. Только первый и последний способы можно сопоставлять непосредственно. Это сравнение благоприятно для теории, если учесть предположения, лежащие в основе анализа данных для растворов, и те приблшкения, которые сделаны при расчетах. Так, например, для изоэлектронных пар, фтористого натрия, хлористого калия и бромистого рубидия значения вычисленные по теории Полинга, соответственпо равны 3,11, 11,08 и 16,38, тогда как значения, найденные Гейдвеллером, составляют 2,81,10,93 и 15,71. Однако при выборе отдельных значений ионных рефракций все еще существует некоторая неопределенность. В связи с этим в табл. 17 приведены два набора соответствующих величин  [c.357]

    Твердые рубидий и цезий являются одноатомными металлами, состоящими из положительных ионов, объединяемых свободными валентными электронами в правильную решетку объемноцентриро-ванного куба. Физические константы ионов калия, рубидия и цезия приведены в табл. 1. Данных о составе пара рубидия и цезия нет. Однако можно полагать, что и в газообразном состоянии рубидий и цезий состоят в основном из атомов (термодинамические свойства одноатомных газообразных щелочных металлов приведены в табл. 2). [c.73]

    Бромиды рубидия и цезия МеВг кристаллизуются в виде негигроскопичных безводных блестящих кубиков или ромбических додекаэдров. В термическом отношении это довольно устойчивые соединения. При нагревании выше температур плавления они заметно улетучиваются, частично разлагаясь с выделением брома и бромистоводородной кислоты. Давление пара бромида рубидия при 1100° С равно 94,9 мм рт. ст., бромида цезия при 1103° С — 141,5 Л1Л1 рт. ст. [92, 93, 127]. [c.100]

    Для получения полупентафосфидов рубидий или цезий нагревают с красным фосфором или его парами при 400—430° С в реакторе, из которого предварительно удален воздух. Затем черный продукт реакции подвергают вакуумной дистилляции для удаления непрореагировавшего металла и фосфора [213]. Можно синтезировать полупентафосфиды рубидия и цезия путем взаимодействия расплавленного фосфора с гидридами этих металлов. [c.110]

    Для получения перхлоратов рубидия и цезия используют следующие методы нейтрализация водных растворов гидроокисей и карбонатов хлорной кислотой обменные реакции сульфатов щелочных металлов и хлората бария или хлоридов щелочных металлов с перхлоратом натрия обработка родных растворов хлоридов и нитратов хлорной кислотой при нагревании до выделения паров НС1О4. Во всех этих случаях полученный продукт перекристаллизовывают три-четыре раза из горячей воды и промывают ледяной водой и этанолом. [c.140]

    Осаждение дихлориодаата рубидия. Технический хлорид рубидия, содержащий Rb l 56—70, K l 9—23, s l 5—19 вес.%, а также примеси натрия, кремния, железа и других элементов, растворяют в воде (на 1 кг исходного продукта требуется 3,0 л воды), нерастворимый осадок отфильтровывают, а к фильтрату добавляют избыток серной кислоты. Кислый раствор упаривают досуха, до прекращения выделения паров серной кислоты. Сухой остаток сульфатов (с примесью гидросульфатов) растворяют в воде и раствор добавляют порциями при непрерывном перемешивании в [c.357]

    Ввиду заметного давления пара лития, рубидия и цезия при температурах их восстановления изменение давления в системе существенно влияет на скорость реакции и ее направление. В связи с этим большинство металлотермических реакций получения лития, рубидия и цезия проводят в специальных вакуумтермических установках [20, 23—29]. [c.386]

    Помимо величины AG], и давления пара эффективность вакуумтермического восстановления лития, рубидия и цезия определяется и другими физико-химическими факторами, а именно способностью к образованию между восстановителем и восстанавливаемым металлом интерметаллических соединений, сплавов и твердых растворов гигроскопичностью исходного соединения восстанавливаемого щелочного металла и т. д. [c.386]

    В соединении Rb4Nb60i7-3H20 [8] нет конечного сложного нона. Анионы образуют слои, которые содержат фрагменты АбХгг (рис. 11.4,6), связанные 10 вершинами (атомами кислорода), по две вершины сверху и снизу и по три по правой и левой стороне фрагмента на рисунке. Это довольно необычная слоистая структура, в которой некоторые слои соединены друг с другом лишь посредством половины ионов рубидия, а остальные ионы рубидия вместе с молекулами воды расположены. между чередующимися парами слоев. [c.217]

    Получение и свойства. Металлический калий, не имеющий широкого промышленного пр-и.менен ия, получается путе.м электролиза расплавленного хлористого калия. Впер-вые он был получен Дэви (Davy) в 1807 г. После цезия и рубидия он имеет из всех металлов наибольший восстановительный потенциал. О-н быстро окисляется во влажно.м воздухе, и его хранят обыкновенно в керосине. Он настолько сильно разлагает воду, что выделяющийся водород горит фиолетовым пламенем. Эта окраска пламени вызывается небольшими количествам паров калия-. [c.309]

    Экстракция получает широкое применение в технологии редких металлов для разделения близких по свойствам элементов [301. Так, для разделения рубидия и цезия наиболее перспективными из опробованных в настоящее время экстрагентов являются замещенные фенолы цирконий и гафний разделяют в промышленности экстракцией родапидов этих метал.лов метализобутилкетоном или нитратов трибутилфосфатом. С помощью этих экстрагентов можно разделить также ниобий и тантал из растворов смесей плавиковой и других минеральных кислот. Молибден и вольфрад разделяются при экстракции ацетофеноном. Редкоземельные элементы делят экстракцией грибутилфосфатом в присутствии высаливателей или из концентрированных растворов азотной кислоты. Хотя коэффициенты разделения соседних пар элементов малы, при наличии нескольких десятков ступеней экстракции возможно получить индивидуальные РЗЭ в чистом виде. Более высоким коэффициентом разделения при экстракции РЗЭ характеризуется ди-2-этилгексил-фосфорная кислота. [c.13]


Смотреть страницы где упоминается термин Рубидий паров: [c.196]    [c.95]    [c.507]    [c.136]    [c.333]    [c.99]    [c.327]    [c.327]    [c.330]    [c.110]   
Основы общей химии Том 3 (1970) -- [ c.17 ]




ПОИСК





Смотрите так же термины и статьи:

Рубидий



© 2025 chem21.info Реклама на сайте