Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серебро потенциалы ионизации

    Вычислить энергию кристаллической решетки фторида и иодида серебра, если известно, что стандартные энтальпии их образования соответственно равны —48,5 и —14,9 ккал/моль энергия химической связи в молекулах Рг и 1г составляет 37 и 35,6 ккал/моль сродство к электрону атомов фтора н иода равно 83,5 и 74,7 ккал/ моль энтальпия сублимации иода 15 ккал/моль, энтальпия атомизации и первый потенциал ионизации для серебра соответственно равны 66 и 174 ккал/моль. [c.232]

    Потенциал ионизации / серебра равен 7,574 В, стандартный окислительно-восстановительный потенциал Ад+/А . = = - -0,799 В. Положительно заряженный ион Ад" " обладает большим сродством к электрону, так как энергия, выделяющаяся при присоединении электрод(а к положительному иону, равна энергии ионизации с обратным знаком. Поэтому положительно заряженный ион А + является сильным окислителем. Ион N05 в данных условиях ни окислительных, ни восстановительных свойств проявлять не может. [c.146]


    Теплота атомизации и первый потенциал ионизации для серебра составляют 66 и 174 ккал/моль соответственно. В задаче 12 гл. I приведены значения энергий связи для галогенов. Теплота испарения брома составляет 8 ккал/моль, а теплота сублимации иода — 15 ккал/моль. Вычислите энергии решетки для галогенидов серебра, исходя из их стандартных теплот образования [c.99]

    Таким образом, медная форма, подобно бариевой, не способна вызвать диссоциацию молекул физически адсорбированной воды. Предвидеть это заранее бьшо трудно, так как двузарядный ион меди обладает одним из наиболее, высоких ионизационных потенциалов среди изученных катионов. Вполне возможно, однако, что ионы меди в цеолите Y являются однозарядными, а в этом случае они должны иметь значительно более низкий потенциал ионизации. Можно было лишь предположить, что цеолиты с ионами серебра по своим свойствам близки к цеолитам со щелочными катионами. Добавление воды вызывает изменение интенсивности полосы при 3633 см , связанной с взаимодействием молекул адсорбированной воды со структурными гидроксильными группами за счет образования водородных связей. Остальная часть спектра очень похожа на спектр воды, адсорбированной на цеолитах со щелочными металлами. И здесь наряду с широкой полосой при 3250 см наблюдается узкая полоса при 3685 см . Вероятно, появление этих полос обусловлено такими же взаимодействиями, которые предполагаются для цеолитов со щелочными катионами. Схематично их можно представить таким образом  [c.231]

    Теплота атомизации и первый потенциал ионизации для серебра 66 и 174 ккал/моль. Энергия связи в молекуле брома 46 ккал/моль, теплота испарения [c.55]

    В. Латимер для иллюстрации важности учета различных факторов в определении потенциала привел пример реакции ионизации натрия и серебра в водной среде  [c.88]

    Способность посылать ионы в раствор у различных металлов выражена неодинаково. При одинаковых условиях она зависит от энергии сублимации металла, энергни ионизации его атомов и энергии гидратации ионов. Чем меньше энергия сублимации и энергия ионизации и чем больше энергия гидратации, тем выше способность металла посылать ионы в раствор и тем ниже его равновесный потенциал. Из таких пассивных металлов, как медь, серебро, выход ионов в раствор почти не происходит. Поэтому, например, для медного электрода, погруженного в раствор соли меди, преобладает адсорбция ионов металла на поверхности электрода. Схематично процесс можно изобразить следующим образом  [c.238]

    Внедрение щелочных металлов влияет на перенапряжение водорода, как это показано для свинца, серебра, цинка, кадмия. Скорость внедрения зависит от дефектности поверхности катода и потенциала. Дефектность поверхности растет со временем поляризации. Так как внедрение сопровождается обратным процессом — ионизацией атомов щелочного металла, кристаллическая решетка на поверхности катода обогащается вакансиями. Внедрение в такую структуру облегчено, что ускоряет процесс. При продолжительной поляризации это приводит к разрыхлению поверхности катода и увеличению ее истинной площади. [c.46]

    Так как реакция ионизации кислорода на серебре протекает в условиях, когда на поверхности электрода имеется значительное количество хемосорбированного кислорода, то для понимания кинетики этой реакции необходимо знать состояние поверхности электрода при любом значении потенциала в интервале от обратимого водородного до потенциала фазового равновесия системы [c.143]

    Исследование реакции ионизации кислорода на серебре проводилось с помощью дискового электрода с кольцом (рис. 5). Из полученных результатов следует, что на полярографической волне наблюдается увеличение тока ионизации кислорода в интервале потенциалов 0,9—0,5 в при дальнейшем сдвиге потенциала в катодную сторону в интервале 0,4—0,0 е наблюдается линейная [c.145]


    Для создания во всем измерительном объеме осесимметричного электрического поля (что приводит к независимости коэффициента газового усиления от места ионизации) поверхность счетчика и его торцевые пластины покрывали слоем полупроводника (фиг. 41). Тогда кривая дискриминации характеризуется меньшим градиентом в области нулевого порога, что практически обеспечивает достаточно точное построение этой кривой. Такие торцевые пластины были изготовлены для нас фирмой Корнинг гласс компани (Нью-Йорк) они представляли собой стеклянные пластины с напыленным полупроводниковым слоем. Контактными электродами этих пластин служили два кольца из серебра, нанесенного методом осаждения на стекло, причем внутренний диаметр внешнего кольца равнялся 95 MJM, а наружный диаметр внутреннего кольца — 12 мм. Внешнее кольцо касалось высоковольтного электрода внутреннее кольцо при помощи делителя напряжения заряжалось до потенциала, равного потенциалу на расстоянии 6 мм от оси цилиндра вдали от его концов. Сопротивление между каждой парой серебряных колец, нанесенных на торцевые пластины, достигало 1,38-10 и 2,82-10 олг. Величины сопротивлений в делителе напряжения определялись допустимой нагрузкой источника высоковольтного питания и тем, что они должны были быть малы по сравнению с сопротивлением полупроводящих поверхностей. Последнее требование обеспечивает независимость падения потенциала от характеристик полупроводника и любых их изменений. Сопротивление торцевых пластин должно было быть настолько малым, чтобы на них не успевали собираться большие электрические заряды, нарушающие геометрию поля. Применявшиеся полупроводниковые покрытия, по-видимому, удовлетворяли этим двум противоречивым требованиям. [c.162]

    Ale( N) —. Ударная ванна серебрения обычно содержит цианид меди. Интересно, что эта ванна рекомендуется для предва-4>ительного покрытия стали, в то время как ванны, рекомендуемые для медных сплавов дианида меди не содержат. Автор в своей работе применяет ударные медноцианистые ванны серебрения для сплавов на основе железа или меди. Сочетание низкой концентрации серебра и высокой концентрации цианида означает, что потенциал катода при относительно высокой плотности тока имеет очень низкое значение, тогда как перенос заряда и диффузионная поляризация велики. При погружении подложки под напряжением низкий потенциал препятствует ионизации подложки и, таким образом, позволяет избежать нежелательного иммерсионного осаждения серебра. Из ударных ванн осаждается тонкий слой металла после чего процесс электроосаждения проводят в обычных гальванических ваннах. Из разбавленных ударных ванн при высоких плотностях тока нельзя получить толстые покрытия при продолжении электролиза образуется рыхлое порошкообразное покрытие. Образование таких покрытий проходит с низким катодным выходом по току и сопровождается значительным выделением водорода. [c.340]

    Очевидно, что деполяризация за счет разряда иона водорода теоретически может поддерживать процессы электрохимического растворения только тех металлов, потенциалы растворения которых отрицательнее, чем —0,414 в, если растворение идет в нейтральной среде, или отрицательнее нуля, если растворение идет в 1 N кислоте. Для растворения металлов с более положительным потенциалом (меди, серебра) необходимы катодные процессы, обеспечивающие более положительный потенциал катода [51], например, процесс ионизации кислорода. [c.146]

    Различия связаны с тем, что ряд электродных потенциалов учитывает дополнительные процессы, связанные с гидратацией ионов. Так, образование иона Н+ из атома Н совершенно невыгодно (потенциал ионизации Н- Н+, = 13,6 эВ больше, чем потенциалы ионизации хлора, 1 13,1 эВ серы, =10,4 эВ углерода, 1 =11,3 эВ и равен потенциалу ионизации кислорода. У=13,6 эВ, потенциалы ионизации серебра и меди ниже, чем потенциалы ионизации гораздо более активр ых железа и цинка), ио в энергетику образования иона в растворе входит энергия, выделяющаяся в процессе образования связей в гидратах  [c.224]

    Для массивного металла, конечно, потенциал ионизации и сродство к электрону равны по величине и равны работе выхода. Однако для отдельного атома металла потенциал ионизации численно больше, чем сродство к электрону. Расчеты методом молекулярных орбиталей, проведенные Бетцольдом [1, 40], показывают, что различие между потенциалом ионизации и сродством к электрону сохраняется у очень небольших агрегатов атомов металла, но с увеличением размера агрегата эти параметры сближаются для серебра и палладия они совпадают, когда агрегаты состоят из 20 и 4 атомов соответственно. Абсолютное значение точек сходимости не внушает особого доверия из-за ограничений самого метода расчета, но важен факт, что сходимость наблюдается для агрегатов весьма небольшого размера. Кроме того, из этих расчетов, но-видимому, следует, что, когда потенциал ионизации и сродство к электрону становятся одинаковыми, их величина превышает работу выхода для [c.273]

    Свойства очень небольших агрегатов, состоящих всего из нескольких атомов металла, отличаются от свойств металла в описанном выше случае. Для таких агрегатов простая теория объемного заряда на поверхности раздела металл —полупроводник определенно неприменима, и в этом случае необходимо использовать локальный подход. Если агрегат состоит, например, из трех атомов, перенос уже одного электрона к носителю оказывает существенное влияние на свойства агрегата. Оценки потенциалов ионизации небольщих агрегатов серебра и палладия сделаны Бетцольдом [1] и Митчелом [3]. Например, для тетраэдра Ag4 потенциал ионизации составляет 4,7—6,0 эВ, и эта величина характеризует минимальное значение сродства к электрону носителя при образовании из Л 4 иона Лд+4 для тетраэдра Рс14 потенциал ионизации, по-видимому, составляет 5,5—8,0 эВ, если исходить из потенциала ионизации отдельного атома и вводить коэффициент пересчета, как в расчетах Бетцольда [1]. На поверхности некоторых окислов-изоляторов имеются центры — акцепторы электронов, для обнаружения которых широко используют образование катионов при адсорбции полициклических углеводородов (например, перилена). Потенциалы ионизации применяемых в этих целях ароматических углеводородов составляют 6,4—8,4 эВ. Следовательно, весьма логично допустить возможность переноса электронов от небольщих агрегатов металла к таким электроноакцепторным центрам, которые, как известно, способствуют образованию катионов ароматических углеводородов. К носителям, которые имеют электроноакцепторные центры данного типа, относятся алюмосиликаты и содержащая хлор окись алюминия [74, 75]. Сама окись алюминия даже [c.283]

    Ртуть обладает высокими потенциалами ионизации. Например, ее первый потенциал ионизации равен 10,43 в. Он гораздо выше ионизационных потенциалов висмута (7,287 в), олова (7,342 в), свинца (7,415 в), меди (7,724 в), цинка (9,391 в) и др. Ионизационный потенциал ртути выше также ионизационного потенциала золота и элементов платиновой группы, и в этом отношении ртуть оказывается более благородной , чем золото (9,22 в), серебро (7,574 в), платина (9,0 в) и другие металлы. Высокое значение ионизационного потенциала ртути определяет ее способность легко восстанавливаться из различных соединений до металлического состояния, и поэтому она часто встречается в природе в виде самородной ртути. Если бы, по мнению А. А. Саукова ртуть, наряду с процессами ее образования из разных соединений, не испарялась, то весьма вероятно, что она встречалась бы в природе гораздо чаще, чем самородное золото и серебро. [c.24]


    Однако отсутствие в масс-спектрах пиков Ag2X, AgX % Agr i близости потенциалов появления Ag+ к потенциалу ионизации атомарного серебра позволяет отнести его происхождение к простой ионизации. Для Те+ потенциал появления н = 1,6, потенциал ионизации /./, = 9,01 эв [5]. Наличие атомов в паровой фазе обнаружилось бы при энергии электронов, равной 9,01 эв. Это указывает на отсутствие в газовой фазе атомов Те и появление Те в результате реакции [c.225]

    Хикам [75] определил серебро в меди, а Хониг [73] — примеси в полупроводниковых материалах. Большинство примесей в арсениде галлия ОаАз можно обнаружить в пределах 10 -10" % [76]. Элементы, потенциал ионизации которых меньше работы выхода с поверхности, становятся положительными ионами (Ь1, Na и др.) чувствительность обнару>кепия этих элементов ниже 10" %. Чувствительность определения элементов с малыми значениями Q, а также элемептов, определению которых мешает фон, состав- [c.345]

    Для этой цели подходят металлы, ионизация и разряд ионов которых происходит с низкой поляризацией (обычно серебро или медь). Напряжение на хемотроне в процессе переноса сохраняется поэтому низким до тех пор, пока на первом электроде остается металл М. Когда весь металл М окажется перенесенным с первого электрода на второй, на металле — основе электрода I должен начаться другой процесс, идущий при более положительном потенциале, а потенциал электрода И смещается в отрицательную сторону. Напряжение на хемотроне резко возрастает, что указывает на конец интегрирования. При перемене полярности процесс накопления информаши может быть продолжен. Так как количестао перенесенного металла М известно, а анодный и катодный процессы протекают со 100%-ным выходом по току, то по закону Фарадея можно определить количество прошедшего электричества. При введении в хемотрон третьего электрода появляется возможность промежуточного считывания величины интеграла. [c.386]

    Рассчитайте стандартный электродный потенциал се- ребра, воспользовавшись следующими энтальпиями энтальпия сублимации (атомизации) серебра АЯ°субл = 280 кДж/моль, энтальпия ионизации атома серебра ДЯ°иониз = 728 кКж,/моль, энтальпия гидратации газообразного иона Ag+ АЯ°гидр = = —467 кДж/моль.  [c.260]

    Рассчитайте стандартный электродный потенциал серебра, воспользовавщись следующими энтальпиями энтальпия сублимации (атомизации) серебра ДЯ убл = 280 кДж/моль, энтальпия ионизации атома серебра = 728 кДж/моль, энтальпия гидратации газооб- [c.376]

    Такие металлы, как алюминий, олово, медь и серебро, поляризуются сильно лишь до определенного потенциала По достижении электродом этого потенциала поверхность активируется и растворение начинает идти без заметной поляризации. Значительное торможение анодной реакции ионизации металла наблюдается на никеле, золоте, платине и нержавеющих сталях. Эти металлы можно заполяризовать до относительно больших полб жительных потенцилов без того, чтобы они перешли в активное состояние. [c.65]

    В кислом растворе (2 и. H2SO4) при анодной поляризации поверхности, подвергнутой ранее катодному восстановлению, можно установить три анодных процесса. На кривых потенциал — время отмечаются ионизация адсорбированных атомов водорода, окисление адсорбированного водорода (присутствует в виде гидрида) и растворение серебра с образованием пленки труднорастворимой соли. При повторной катодной поляризации протекают последовательно восстановление суль-V фата серебра, разряд водорода, образование [c.472]


Смотреть страницы где упоминается термин Серебро потенциалы ионизации: [c.88]    [c.143]    [c.163]    [c.578]    [c.144]    [c.382]    [c.251]    [c.109]    [c.15]    [c.65]    [c.339]    [c.173]    [c.184]    [c.146]    [c.30]    [c.574]   
Основы общей химии Том 3 (1970) -- [ c.44 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал ионизации



© 2024 chem21.info Реклама на сайте