Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесие динамическое явление

    Адсорбционное равновесие — это равновесие динамическое. Некоторые адсорбированные молекулы отрываются от адсорбента и переходят в окружающую среду. Это явление, обратное адсорбции, называется десорбцией. И наоборот, молекулы из окружающей среды могут осаждаться на адсорбент. [c.93]

    Адсорбция сопровождается выделением тепла. Теплота адсорбции при расчете на 1 з адсорбента приблизительно пропорциональна величине адсорбции, поэтому она может служить относительной мерой адсорбционной способности пористых адсорбентов. Так как адсорбция есть поверхностное явление, то чем больше общая поверхность адсорбента, тем больше молекул он может поглотить. Поэтому порпстые и порошкообразные адсорбенты обладают большой адсорбционной (поглотительной) способностью. Адсорбционная характеристика пористых адсорбентов выражается равновесной статической п динамической активностью. Равновесная статическая активность — это число молекул вещества, поглощенных адсорбентом при наступлении адсорбционного равновесия она характеризует обычно процессы периодической адсорбции. Динамическая активность — число молекул, поглощенных поверхностью адсорбента при движении вещества через слой адсорбента она характеризует процессы непрерывной адсорбции. [c.24]


    Равновесие представляет собой динамическое, а не статическое явление. Рассмотрим, например, реакцию диссоциации паров пентахлорида фосфора, полагая, что она начинается с чистого РС]  [c.92]

    Перечень достижений естествознания XX в. фундаментальной важности был бы неполным без еще одного эпохального события, которое произошло совсем недавно - в конце 70-начале 80-х годов. Речь идет о возникновении нелинейной неравновесной термодинамики, или физики открытых систем. Ее становление обязано прежде всего И.Р. Пригожи-ну, разработавшему теорию динамических состояний макроскопических систем особого типа - диссипативных самоорганизующихся структур -и теорию бифуркаций, дифференцирующую беспорядочные флуктуации на обратимые (равновесные) и необратимые (неравновесные). Они составили основу для изучения явлений, суть которых определяется неразрывной связью макроскопических свойств большого ансамбля с индивидуальными свойствами микроскопических составляющих. В открытых системах, находящихся вдали от положения равновесия, могут протекать процессы, приводящие к спонтанному возникновению порядка из хаоса. Источником самопроизвольного конструирования пространственного и пространственно-временного порядка на всех уровнях структурной организации системы является необратимость бифуркационных флуктуаций. [c.10]

    Независимо от направления процесса (испарение с поверхности или конденсация пара влаги на поверхности) между газом и жидкостью через определенное время установится динамическое равновесие. Здесь наблюдаются три физических явления одновременно испарение жидкости, увеличивающее содержание влаги в газе, отбор из влажного газа теплоты, идущей на испарение жидкости, и повышение (понижение) температуры жидкости до значения, примерно постоянного на протяжении всего процесса насыщения газа. В состоянии полного насыщения температуры газа и жидкости становятся равными, что соответствует предельному равновесному состоянию. Эту температуру в изобарно-адиабатическом процессе называют температурой адиабатического насыщения газа. При некоторых условиях температура, показываемая смоченным термометром, соответствует температуре испаряющейся жидкости. Поэ- [c.224]

    Химическое равновесие — динамическое явление. Тот факт, что в состоянии равновесия не происходит никакого химического превращения, можно объяснить двояко либо компоненты системы совсем не взаимодействуют, либо непрерывно и одновременно протекают реакции в обоих направлениях, так что число молей веществ, которые превращаются в единицу времени при одной из реакций, равно числу молей, которые превращаются при реакции, идущей в обратном направлении. Первое объяснение справедливо для метастабильного состояния, второе — для истинного равновесия. [c.168]

    Таким образом, каждый элементарный объем является в свою очередь закрытой элементарной системой, далекой от термодинамического равновесия (см. гл. V, VI). В системе существует распределение по пространству веществ, богатых энергией, или распределение источника энергии, за счет которого в элементарных объемах индуцируются различные процессы, связанные с диффузией через них активных веществ. Среди своеобразных динамических явлений в таких системах большое значение имеет распространение самоподдерживающихся волн возбуждения, сохраняющих свои характеристики (амплитуду, период, форму, скорость) за счет распределенного в среде источника энергии. Именно из-за этого свойства такие системы получили название активных распределенных систем. [c.83]

    Для измерения краевых углов было предложено довольно много методов, так как точное измерение встречает ряд трудностей. Эти трудности связаны, главным образом, с явлением статического и динамического гистерезиса смачивания. Гистерезисом смачивания называется отклонение величины краевого угла от значения его, соответствующего состоянию равновесия капли. [c.138]


    Поры закрываются вследствие образования пленки окислов и снова возникают в других местах, где происходит растворение пленкн или ее катодное восстановление. Явление пассивности, по теории Г. В. Акимова, представляет собой динамическое равновесие между силами, создающими защитную пленку (окислителями, анодной поляризацией), и силами, нарушающими ее сплошность (водородными и галоидными ионами, катодной поляризацией и др.). [c.307]

    Нельзя понять сложных явлений в растворе и дать верную его характеристику, не учитывая всех факторов, а принимая во внимание лишь некоторые из них и тем более один (нанример, влияние водородной связи), даже если он преобладает. Необходимо учитывать все типы взаимодействия между всеми видами частиц, включая те из них, которые возникли при образовании раствора (они могут быть связаны не только с формированием новых частиц, но и с разрушением существовавших в индивидуальных веществах). Возникновение и распад любых агрегатов описываются законом действующих масс, так как в растворе имеет место динамическое равновесие между всеми входящими в него частицами. Это позволяет охарактеризовать раствор как равновесную однородную систему, которая достигла минимума изобарного потенциала в результате взаимодействия всех ее частиц за счет всех возможных типов взаимодействия между ними.  [c.134]

    Менделеев рассматривал растворы как неустойчивые химические соединения постоянного состава, находящиеся в состоянии частичной диссоциации , причем равновесие в этих процессах является динамическим равновесием. Этим было положено начало теории растворов, учитывающей значение не только физической стороны явлений, но и химического взаимодействия между частицами компонентов. Д. И. Менделеев неоднократно подчеркивал, что обе стороны явления в растворах неразрывно связаны между собой. [c.297]

    Истинное динамическое равновесие характеризуется протеканием процесса в прямом и обратном направлениях с одинаковыми скоростями. В связи с этим равновесная система не изменяется во времени при постоянных внешних условиях. Бесконечно малое внешнее воздействие тотчас же вызывает бесконечно малые изменения в системе при прекращении внешнего воздействия система самопроизвольно возвращается в исходное состояние (это явление называют релаксацией). [c.40]

    Ацетоуксусный эфир СНз—С—СНа—ССЮС2Н5. Исключительный интерес с теоретических позиций и большое практическое значение в разнообразных синтезах играет этиловый эфир ацетоуксусной кислоты (ацетоуксусный эфир), существующий в двух изомерных формах, которые легко переходят друг в друга и находятся в состоянии подвижного равновесия. Это явление получило название подвижной (динамической) изомерии, или таутомерии. Одна из изомерных форм ацетоуксусного эфира содержит кетогруппу (кето-форма), другая гидроксильную группу у ненасыщенного углеродного атома (еноль-ная форма) отсюда и название этого вида таутомерии — кето-енольная таутомерия  [c.160]

    Уже с давних пор многие исследователи пытались объяснить некоторые явления, связанные с оптической активностью, представлением о динамической изомерии , т. е. наличием в жидких оптически активных веществах (или в растворах) нескольких форм, равновесие между которыми меняется в зависимости от внешних условий. О природе этих форм высказывались самые различные предположения ассоциация самого оптически активного вещества, образование ассоциатов с растворителем (сольватов). Иное объяснение было впервые выдвинуто в 1930 г. для истолкования сложной дисперсии винной кислоты допустили существование в ней трех конформаций, каждая из которых дает свой определенный вклад Б наблюдаемое вращение  [c.299]

    Жидкость — система динамическая. Атомы или молекулы, сохраняя ближний порядок во взаимном расположении, участвуют в тепловом движении, которое сложнее, чем в кристалле. Атомы и молекулы жидкости совершают колебания, как в кристаллах, но положения равновесия, относительно которых происходят эти колебания, не остаются фиксированными. Совершив некоторое число колебаний около одного положения равновесия, молекулы перемещаются в соседнее положение, обусловливая явление диффузии. [c.8]

    Механизм явлений у кромки сопла можно представить себе следующим образом [74]. следствие наличия в потоке, выходящем из сопла, небольшого остаточного давления (сверх атмосферного давления), поток при выходе из сопла расширяется и поэтому (рис. 94) основание конуса горения несколько больше, чем выходное сечение сопла. Вследствие этого у среза сопла образуется небольшой горизонтальный участок фронта воспламенения, где скорость потока Шр минимальная, и поэтому здесь прежде всего достигается динамическое равновесие между скоростью горения и скоростью воспламенения. Эта кольцевая зона [c.170]

    Стабильность белкового состава организма — следствие устойчивого динамического равновесия, при котором количество постоянно распадающихся белков практически равно синтезируемому их количеству. Поддержание этого равновесия между анаболизмом и катаболизмом — явление тонкое, так как организм располагает лишь очень малым резервом аминокислот. В организме человека соотношение свободных аминокислот и возобновимых белков составляет приблизительно 1 5000 [65]. [c.568]

    Степень сшивания смолы с азывает существенное влияние на степень набухания смолы, селективность и скорость установления равновесия. Низкая степень сшивания обусловливает высокую набухаемость при контакте с растворителем. Объем набухшей смолы в значительной степени изменяется с изменением свойств внешнего раствора. Это явление особенно нежелательно при работе в динамическом режиме. Низкая степень сшивания смолы способствует уменьшению различий в сродстве ионов к ионообменнику, что является одной из причин размывания зон при хроматографическом разделении. [c.31]

    При интенсивном перемешивании можно полагать, что капли постоянно коалесцируют и редиспергируются, результатом чего является образование некоторого распределения капель по размерам, Средний размер отражает состояние динамического равновесия между явлениями распада капель и их коалесценции. При этом распад капель доминирует в разбавленных эмульсиях, а их коалесценция — в концентрированных. Кроме того, известно, что скорость жидкости в сосуде с мешалкой изменяется от точки к точке, будучи наибольшей в непосредственной близости от лопасти мешалки 29-31. Следовательно, можно ожидать изменения размера капель в объеме смесителя. Такие изменения [c.463]

    Теория дефлоккуляции должна основываться на электростатической теории адсорбционных оболочек вокруг глинистых частиц, т. е. в мицеллах с двойным слоем Гуи — Фрёйндлиха. Устойчивость суспензоида в значительной мере определяется равновесиями обмена основаниями, которые налагаются на динамические явления в мицеллах. Прежде чем еще раз вернуться к этим проблемам с тем, чтобы рассмотреть их более детально, мы дадим краткий обзор некоторых наиболее показательных экспериментальных исследований. [c.355]

    Поскольку осуществимо также обратное превращение с образованием того же мезомерного аниона, то между изомерами устанавливается динамическое равновесие. Это явление взаимного превращения двух изомеров с переносом протона и одновременным распределением электронов называется прототро-пией. Это наиболее обычный случай более общего явления — таутомерии, т. е. взаимного превращения изомеров с переносом какой-либо подвижной группы и соответствующим перераспределением электронного заряда. Такие изомеры обычно называют таутомерами, чтобы отличить их от изомеров, которые неспособны к взаимному превращению таким легким образом. Одним из первых соединений, для которого была изучена таутомерия, был ацетоуксусный эфир (этил-З-кетобутаноат), способный к равновесию по схеме [c.191]


    Рассматривая явления адсорбции, нужно иметь в виду еще одно обстоятельство. При соприкосновении осадка с раствором, содержащим посторонние ионы того же знака, что и одноименные ионы, адсорбированные осадком, между ними происходит обмен. Чем меньше будет растворимость соединения, образуемого посторонними ионами с противоположными им по знаку ионами решетки, тем сильнее они будут адсорбироваться. Процесс обменной адсорбции можно объяснить следующим примером если осадок BaSOi взболтать с очень разбавленным раствором перхлората свинца, то вследствие динамического равновесия между осадком и раствором будет протекать обменная реакция  [c.112]

    Полученный вывод ьытекает из природы явления диссоциации. Как всякое химическое равновесие, равновесие в растворе слабого электролита является динамическим, т. е. при его установлении протекают с равными скоростями два процесса процесс диссоциз ции и обратный ему процесс образования молекул из ионов. При этом разбавление раствора не препятствует первому из этих процессов — диссоциации. Однако процесс образования молекул из ионов в результате разбавления затрудняется для образования молекулы должно произойти столкновение ионов, вероятность которого с разбавлением уменьшается. [c.239]

    Отверстия, возникшие вследствие движений в земной коре. Эти движения возникают с особой силой во время горообразующих процессов, но и в другое время тангенциальные силы и силы изостазиса создают в земной коре сильные напряжения, которые время от времени так или иначе разряжаются. Если этим силам подвергаются пеуплотненные осадки, они легко поддаются воздействию этих сил, обнаруживая как бы свойство текучести. Но когда в процессе диагенетического изменения осадок затвердевает и превращается в твердую породу, текучесть может возникнуть лишь при чрезвычайно больших давлениях. Обыкновенно же такая порода на динамическое давление реагирует образованием или складок или разрывов, по которым происходит смещение одной части породы по отношению к другой, или возникновением явлений сбросового характера. Иногда напряжение может разрешиться возникновением передвижек внутри самой породы. При этом в породах неоднородного характера, составленных из кусков разной формы и величины, восстановление нарушенного равновесия может произойти путем взаимного перемещения, взаимной передвижки составных частей. По другому будут реаги-, ровать однородные плотные породы, например известняк или твердые мергели. Под влиянием действующих на них сил давления или растяжения в них возникнут разломы, разрывы и трещины. Подобные разрывы чаще всего ограничиваются пределами одного пласта и известны под именем трещин расслоения. Эти трещины увеличивают пористость породы, но их объем обычно невелик по сравнению с общим объемом породы, которая их содержит. Гораздо большее значение они имеют в том отношении, что вместе с плоскостями наслоений они являются отличными путями для циркулирующей в породе жидкости. Последняя при известных условиях способна растворять вещества, встречающиеся на ее пути, и тем самым увеличивать пористость породы. Так как трещиноватые сланцы составлены из нерастворимого материала, то их пористость от циркулирующих по их трещинам вод не увеличивается, а наоборот, даже может уменьшаться, если произойдет выпадение переотложенного, растворенного в воде вещества. Если трещины расслоения возникают в результате сил скручивания, то образуются две или более системы трещин, расположенные под углом друг к другу. Циркулирующие по таким трещинам воды при известных условиях могут увеличивать объем пустот. [c.153]

    Особым видом изомерии является динамическая изомерия, или таутомерия, когда обе изомерные формы легко переходят одна в другую и находятся в равновесии друг с другом. Это явление, логически вытекающее из представлений А. М. Бутлерова о динамических взаимоотношениях атомов в молекуле, предвидел и впервые объяснил создатель теории химического строения (1862 г.). Таутомерия может быть продемонстрирована на примере так называемого кетр-енольного равновесия, в частности [c.107]

    Нестационарные режимы функционирования в сочетании с нелинейными характеристиками процессов вдали от равновесия приводят к качественно новым сложным формам поведения контактно-каталитических систем — хаотическим колебаниям, образованию диссипативных структур, явлениям самоорганизации сложных систем вдали от равновесия. Обнаружение этих новых форм поведения контактно-каталитических процессов открывает путь к научно-обоснованным методам создания кибернетически организованных контактно-каталитических процессов с заранее заданными статическими и динамическими свойствами. [c.18]

    В системе, релаксирующей к равновесию, 1юказатель степени в соотношении между различными входными и выходными параметрами определяется соотношением времен релаксаций этих параметров в системе. Поскольку большинство динамических систем равновесны или движутся к равновесию, а скорости и времена релаксаций различных свойств систем близки, наблюдается преобладание линейных явлений природь[ над нелинейными. [c.79]

    Если металлическую пластинку, папример медную, погрузить в воду (или раствор соли меди), то из слоя металла, находящегося на границе с водой, положительно заряженные ионы Си + начнут переходить в воду. При этом в кристаллической решетке металла окажется нзбыток электронов и пластина приобретает отрицательный заряд. Между отрицательно заряженной пластиной и перешедшими в раствор положительными ионами возникает электростатическое притяжение, что препятствует дальнейшему переходу ионов меди в раствор, т. е. процесс растворения металла прекращается. Одновременно развивается противоположный процесс ионы меди из раствора, подойдя к поверхности пластины, принимают от нее электроны и переходят в нейтральное состояние. Через какой-то промежуток времени устанавливается состояние динамического равновесия, при котором скорость перехода ионов из металла в раствор равна скорости разряжения ионов из раствора на металле. Схематически описанное явление представлено на рис. 87 (ионь металла для простоты изображены негидратирозаннымп). [c.324]

    Когда раствор какого-либо вещества не насыщен, то процесс растворения новых количеств этого кещества преобладает над процессом осаждения (выделения) его из раствора. В пересыщенном растворе наблюдается обратное явление — преобладает процесс выделения растворенного вещества из раствора. В насыщенном растворе, находящемся над осадком растьоренного вещества, уста-наьливается состояние динамического равновесия. В этом случае скорость растворения равна скорости осаждения. [c.96]

    Наблюдающиеся отклонения обусловлены непостоянством произведения равновесных концентраций отклонения тем больше, чем выше заряд иоиов Физический смысл явления заключается в том, что частицы, переходящие в рлствор с поверхности твердого вещества, способны не только к обратному осаждению на поверхность твердой фазы (устанавливается динамическое равновесие между осадком и жидкой фазой), но и склонны к ассоциации в более сложные комплексы и к взаимодействию с растворителем, т е к образованию сольватов (в водных растворах — гидратов) Поэтому не нее молекулы и ионы, находящиеся в жидкой фазе, недут себя одинаково. Это приводит к отклонению от постоянства произведения концентраций и вызывает необходимость внедения понятия произвеОения активное тгй (П.А) при данной температуре. [c.157]

    Если предельное статистическое напряжение сдвига измерить непосредственно после сдвигового воздействия и повторить эти измерения несколько раз через возрастающие по продолжительности периоды покоя, то выяснится, что обычно измеряемые значения напряжения растут с уменьшающейся скоростью, пока не достигается максимальное значение. Такое поведение объясняется явлением тиксотропии. Этот термин был введен Фрейндлихом для обратимого изотермического превращения коллоидный золь—гель. Применительно к буровым растворам это явление вызывается медленной переориентацией глинистых пластинок в направлении с минимальной свободной поверхностной энергией (см. главу 4), в результате чего уравновешиваются электростатические заряды на поверхности глинистых частиц. После определенного периода покоя тиксотропный буровой раствор начнет течь только в том случае, если приложенное напряжение превысит прочность геля. Иными словами, предельное статистическое напряжение сдвига становится равным предельному динамическому напряжению сдвига то. При постоянной скорости сдвига агрегаты глинистых пластинок постепенно перестраиваются в соответствии с преобладающими условиями сдвига, а эффективная вязкость со временем уменьшается до некоторого постоянного значения, при котором структурообразующие и структуроразрушающие силы находятся в состоянии равновесия. Если скорость сдвига повысится, со временем произойдет дополнительное снижение эффективной вязкости, пока не будет достигнуто равновесное значение, характерное для 182 [c.182]

    Что касается неравновесной термодинамики капиллярных систем, то здесь поле исследований только недавно было расширено за область применимости линейной теории [6]. Перед этим Дефэй с сотрудниками [7, 8 ] посвятили значительную по объему работу динамическому поверхностному натяжению и показали, что трудности, возникающие, когда поверхностные явления рассматриваются вне равновесия, обусловлены неавтоном-ностью поверхности в поверхностной модели Гиббса. Недавно Бедо и др. [9], Ковак [10], Келен и Барановский [11 ] привели выражение для производства энтропии межфазных систем. Хаазе [12] вычислил производство энтропии для многофазных электрохимических систем в области применимости линейных феноменологических законов. [c.302]

    Перенос компонентов соприкасающихся фаз идет до достижения между ними динамического равновесия. Явления, происходящие при абсорбции на границе раздела фаз, описывают на основе двухпленочной теории Уитмана [42], согласно которой изменение концентраций переходящего вещества происходит в тонких приповерхностных слоях (пленках) газа Рц и конденсированного вещества (рис.5.35). Принимают, что в приграничных пленках конвекция отсутствует, и массоперенос осуществляется исключительно за счет молекулярной диффузии, в то время как перенос из объема газа к пленке и от пленки в объем конденсированной фазы У происходит очень быстро (например, за счет турбулентной диффузии) Поэтому концентрации переходящего компонента у в объеме газовой фазы У , и х в объеме У считаются постоянными. В плёнке газа концентрация переходящего компонента падает до значения у на поверхности радела фаз 8, а пленка конденсированной фазы насыщается до концентрации х , причем сама поверхность 8 не оказывает сопротивления переходу компонента В пленке концентрация снижается до постоянного значения х вследствие распределения компонента в объеме У . Перенос продолжается до достижения равновесия, при котором химические потенциалы переходящего компонента в газовой и конденсированной фазах выравниваются. [c.326]

    Как мы увидим дальше, динамический порядок, возникновение динамических структур и их упорядоченное поведение во времени возможны лишь вдали от равновесия. Линейная неравновесная термодинамика, кратко изложенная в этой главе, справедлива лишь вблизи равновесия. Ее основные положения выражаются соотношениями (9.51) и (9.80). Первое описывает сопряжение различных кинетических процессов вследствие отличия недиагональных коэффициентов Ьц 1 ]) от нуля, второе есть математическое выражение теоремы Пригожина о минимуме производства энтропии в стационарном состоянии. Несомненно, что в биологической открыто11 системе реализуются сопряженные процессы. Поэтому общая феноменологическая теория Онзагера — Пригожина позволяет объяснить важные биологические явления. Вопрос о применимости теоремы Пригожина к биологическим системам более сложен. Как мы видели, продукция энтропии а минимальна лишь в тех стационарных состояниях биологических систем, которые близки к равновесию. Эти системы описываются линейными соотношениями (9.51). Но в физике линейная зависимость реакций системы от воздействия, вызвавшего эту реакцию, есть всегда лишь первое приближение, справедливое для малых воздействий. В нашем случае малость означает малое удаление от равновесия. Для рассмотрения биологических систем и их динамической упорядоченности необходимо выйти за пределы линейной термодинамики. [c.327]

    Дальнейшие подробности можно найти в оригинальной статье Перутца [23], в которой рассмотрен также кислотный эффект Бора. Обсуждая эти конформаци-онные явления, Перутц справедливо указывает, что белок —динамическая система. И третичная, и четвертичная структуры гемоглобина быстро и непрерывно осциллируют между ок-си- и дезокси-конформация-ми. В присутствии лиганда происходит не выключение дезокси-конформации, но сдвиг конформационного равновесия [23]. Рассмотренные Перутцом явления ярко выражают ЭКВ (см. стр. 408). Сдвиг электронной плотности в геме вызывает конформационную перестройку глобулы. [c.432]

    Обычио в растворах одновременно присутствуют различные таутомерные формы одного и того же моносахарида, находящиеся в динамическом равиовесии друг с другом при нарушении соотношения форм система возвращается в состояние равновесия (явление мутаротации), что можно заметить по изменению величины удельного вращения раствора. В обычных условиях равновесие существенно сдвинуто в сторону а- и [ -пираноз относительное содержание а- и -аномеров в значительной степени определяется конформацией пиранозноги кольца. [c.450]


Смотреть страницы где упоминается термин Равновесие динамическое явление: [c.100]    [c.47]    [c.41]    [c.93]    [c.180]    [c.187]    [c.250]    [c.171]    [c.344]    [c.18]    [c.22]    [c.30]    [c.250]   
Общая химия (1968) -- [ c.168 ]




ПОИСК





Смотрите так же термины и статьи:

Равновесие динамическое



© 2025 chem21.info Реклама на сайте