Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплота изменение с температурой

    Поскольку при равновесии соблюдается условие АЯ =- T AS, изменение температуры приводит к изменению и АИ. При повышении температуры в системе усиливается действие энтропийного фактора (TAS >0), т.е. усиливается эндотермический процесс. Прн понижении температуры роль энтропийного фактора, наоборот, ослабевает, т. е. становится более заметным экзотермический процесс. Согласно принципу Ле Шателье, повышение температуры вызывает смещение равновесия в направлении того из процессов, течение которого сопровождается поглощением теплоты, а понижение температуры действует в противоположном направлении. Так, в рассмотренных выше равновесных системах [c.181]


    IV. Измерения коэффициентов теплообмена при нестационарном тепловом режиме зернистого слоя. Преимуществом этих методов является то, что средние коэффициенты теплообмена находятся по результатам измерения температур газа на входе и выходе из слоя без измерения температур элементов слоя и количества переданной теплоты. Используют два основных режима нестационарного нагревания (охлаждения) зернистого слоя потоком газа, текущего через слой при ступенчатом и при периодическом (синусоидальном) изменении температуры газа на входе в слой, [c.144]

    Теплота — это форма энергии. Температура — это условная мера теплового состояния. Если тепловая энергия подводится при разных условиях, то изменение температуры при одном и том же количестве теплоты может быть различным. [c.36]

    Удельной теплоемкостью называется количество теплоты, требуемое для изменения температуры единицы массы или объема вещества на один градус. [c.45]

    Если поглощение или выделение теплоты прп постоянном давлении сопровождается изменением температуры системы, то изменение энтропии может быть определено следующим образом. [c.69]

    В изотермическом процессе нет изменения температуры газа, поэтому его внутренняя энергия не изменяется, а вся подводимая теплота расходуется на совершение внешней работы  [c.29]

    В нешироких интервалах умеренных температур, в которых обычно производятся кинетические измерения, энергия актива-Ш1И, по-видимому, не зависит от температуры. Это можно объяснить тем, что энергия активации представляет собой теплоту образования промежуточного соединения, а разница в физических теплотах продуктов реакции и исходных веществ с изменением температуры изменяется незначительно. Однако в ряде случаев такое влияние температуры было обнаружено. Так, например, тщательное повторное изучение экспериментальных результатов, на анализе которых Аррениус основывал свою теорию, и данные более поздних исследований позволили установить некоторую зависимость от Г  [c.35]

    Теплота испарения только поддерживает тепловой баланс процесса испарения и не влияет на изменение температуры испаряющейся жидкости в сторону ее повышения. [c.99]

    Плавление. Теплота плавления—перехода твердой фазы в жидкую—всегда положительна. Объем (мольный, удельный) жидкой фазы (У> =У2) в общем случае может быть больше или меньше. объема того же количества твердой фазы ( = 1)- Отсюда в соответствии с уравнением (IV, 56) вытекает, что величина йр/йТ или обратная ей величина йТ/с1р, характеризующая изменение температуры с увеличением давления, может быть положительной или отрицательной. Это значит, что температура плавления может повышаться или снижаться с увеличением давления. [c.140]

    При изменении температуры фазовое превращение смещается в направлении, в котором (при постоянной температуре) изменение энтропии (а следовательно, и теплота процесса) имеет тот же знак, что и изменение температуры (87 ) . [c.156]

    В обсуждаемом уравнении изменяться могут все три величины теплота iq), масса воды (/и ) и изменение температуры (А/). Если же две из них постоянны (известны), то третью вычисляют простым арифметическим действием. Рассмотрим следующий пример. [c.240]

    Последовательность выполнения работы . 1. Приготовить 50 мл раствора концентрации т . 2. Выполнить ип. 1—3 работы 1. 3. Взвесить ампулу на аналитических весах, поместить в нее 6 мл раствора с концентрацией т и вновь взвесить ее. 4. Выполнить пп. 5 и 6 работы 1. 5. Определить скорость изменения температуры воды в калориметре ио термометру Бекмана, которая в этом опыте должна быть близка к нулю. 6. Определить суммарную теплоемкость калориметрической системы W (см. пи. 2 — 16 в работе 2). 7. Рассчитать теплоту разбавления раствора от концентрации nii до концентрации т. ио уравнению [c.138]


    Произвести одиннадцать измерений температуры по термометру Бекмана после установления равномерной скорости изменения температуры. 10. Определить графически Д/. 11. Вычислить удельную теплоемкость твердого азобензола по уравнению (У,25). 12. Настроить горячий ультратермостат на температуру 70°. Поместить контейнер в горячий ультратермостат, а пробирку с азобензолом — в контейнер и закрыть контейнер ватным тампоном. Выдержать пробирку 40 мин при 70°. 13. Повторить пп. 5—10. 14, Рассчитать удельную теплоту плавлепия азобензола по уравнению (У,32). 15. Вычислить молярную теплоту плавления и молярное изменение энтальпии при плавлении азобензола. [c.149]

    Достаточно простым и надежным методом определения теплового эффекта является следующий метод [50]. Сырье попеременно продувается азотом и воздухом в заданном диапазоне-температур. На стадии продувки азотом температура окисляемого материала снижается за счет тепловых потерь, а на стадии продувки воздухом — повышается за счет теплоты реакции, величина которой превышает тепловые потери. При равной подаче азота и воздуха можно принять гидродинамику в реакторе и тепловые потери в окружающую среду на обеих стадиях равными.- Далее количественная оценка скорости изменения температур на этих стадиях и общая длительность стадий позволяют рассчитать тепловой эффект реакции окисления сырья до продукта с заданной температурой размягчения. [c.46]

    Когда реакция протекает адиабатически, т. е. в условиях, когда стенки реактора изолированы настолько хорошо, что потери тепла в направлениях, перпендикулярных потоку, пренебрежимо малы. В этом случае температура будет возрастать или снижаться вдоль оси реактора в зависимости от того, является ли реакция экзотермической или эндотермической, причем характер изменения легко определить, зная теплоту реакции. Для этой цели составляется тепловой баланс, учитывающий изменение температуры от входа в реактор до заданного поперечного сечения в зависимости от величины переменной у, которая характеризует степень превращения в этом поперечном сечении. Константа скорости (зависимость которой от температуры предполагается известной) таким образом становится функцией у, после чего интегрирование указанных уравнений может быть осуществлено либо численными, либо графическими методами. Эти методы описываются в Приложении И к настоящей главе [c.51]

    Одновременно с этим в Англии Джоуль проводил в сущности те же эксперименты и встретился с теми же безразличием и недоверием. Джоуль был сыном пивовара и учился у Дальтона. В возрасте 19 лет он занялся созданием электрических двигателей и генераторов, намереваясь перевести отцовскую пивоварню с паровой энергии на электрическую. Эти попытки оказались бесплодными, но Джоуль заинтересовался взаимосвязью между работой, затрачиваемой на вращение динамомашины, вырабатываемым электричеством и теплотой, которая выделялась за счет электричества. Позже он исключил из этой цепочки электричество и занялся изучением теплоты, образующейся при механическом перемешивании воды лопатками, которые приводились в движение падающим грузом (рис. 15-1). Подобно Майеру, Джоуль обнаружил, что такие измерения очень трудны, потому что они связаны с весьма незначительными изменениями температуры. Несмотря на это, он получил для механического эквивалента теплоты значение 42,4 кг см кал S которое всего на 1% отличается от принятого в настоящее время значения 42,67 кг см кал Это означает, что груз ве- [c.8]

    Если мы установим, что изменение температуры воды в городах Д и Б одинаково в нерабочий и любой другой день, то можно утверждать, что всякое количество теплоты, поступающее в воду в реакторе, должно быть точно скомпенсировано работой, выполненной водой в турбинах (или охлаждением воды перед ее сбрасыванием в реку). И наоборот, каждая порция работы, полученная в турбинах, должна быть скомпенсирована теплотой, полученной в реакторе, иначе вода в городе Б окажется холоднее, чем в городе А. Никакие сведения о воде в этих двух городах не позволяют сделать вывода о количестве теплоты (q), поступившем в воду, или о работе (w), проделанной водой. Ни теплота, ни работа не являются функциями состояния, но их разность является функцией состояния. Если величина — W не поддерживается постоянной, это можно обнаружить, измеряя те или иные свойства воды в городе Б. Наиболее очевидным из таких свойств является температура, но изменению подвергнутся и другие свойства, например молярный объем, плотность, электропроводность и пр. И наоборот, если мы установим состояние воды в городах А и Б, то это значит, что мы установим изменение величины q — w в результате протекания воды по территории государства справа, хотя мы в отдельности не измеряли значения величин q и w. Их разность представляет собой изменение функции состояния, Е. [c.18]

    Для тех, кто незнаком с дифференциальными обозначениями, можно ввести представление о средней теплоемкости, определяемой через полное количество теплоты (Дд), которое передается при изменении температуры (АТ)  [c.21]

    Данные, приведенные в табл. 17-4, представлены в графическом виде на рис. 17-3. График зависимости AG°/T от 1/Т оказывается почти прямолинейным это означает, что стандартная теплота реакции диссоциации SO3 в диапазоне между 298 и 1400 К почти не изменяется. Среднее значение тангенса угла наклона графика в указанном интервале изменения температур дает среднее значение энтальпии реакции, равное + 195 кДж, экспериментально измеренное значение энтальпии этой реакции на одном из концов интервала изменения температуры (в точке 298 К) оказывается равным 4-196,6 кДж. С достаточной точностью можно считать, что теплота рассматриваемой реакции постоянна при всех температурах. [c.110]

    Видно, что теплоты гидрокрекинга в технических условиях могут быть довольно большими. Хотя данные табл. Х-9 носят иллюстративный характер, они указывают на необходимость учета изменения температуры в ходе процесса из-за возможных разогревов. Так, обозначив количество поступаюш его в единицу времени на гидрокрекинг сырья общую массу реакционной смеси Ср, ее теплоемкость Ср, для расчета разогрева в адиабатическом однослойном реакторе получаем уравнение  [c.356]

    При расчете промышленных адиабатических реакторов должны быть определены теплоты стадий они приведены в табл. Х-12 Кроме того, математическое описание химического процесса должно быть дополнено расчетом изменения температуры между слоями катализатора при вводе охлаждаюш,его агента (циркуляционного газа или холодного сырья). [c.361]

    Теплоту можно выразить через изменение температуры А Г в рассматриваемом объеме V за время т. [c.84]

    В расчетах теплот в качестве исходных удобнее пользоваться мольными теплотами реакций индивидуальных веществ. Анализ данных табл. 10 показывает также, что в интервале температур 700—900 К, т. е. для большинства промышленных процессов, теплоты реакций слабо зависят от температуры. Вообще изменение температуры в процессе на 100—200 градусов слабо сказывается на теплоте реакции. Поэтому при тепловых расчетах реальных неизотермических процессов можно пренебречь влиянием температуры на теплоту реакции. [c.136]

    Приведите примеры процессов, которые протекают самопроизвольно, но без видимого изменения температуры, т. е. без поглощения или выделения теплоты. [c.48]


    Плавление и парообразование являются процессами фазовых превращений (к фазовым переходам относятся также сублимация и полиморфные превращения). Фазовые переходы характеризуются тем, что обе фазы могут сосуществовать, т. е. находиться в равновесии. Это значит, что путем сколь угодно малого изменения температуры и (или) давления можно вызвать сдвиг равновесия. Так, подвод небольшого количества теплоты к системе, состоящей из кипящей воды и сухого насыщенного пара, приводит к смещению равновесия в процессе,парообразования в одну сторону, небольшое сжатие — в противоположную. [c.178]

    Здесь целесообразно обратить внимание на то, что символом АН принято обозначать не только теплоты различных изотермических процессов, но и изменение энтальпии в результате изменения состояния данного объекта вследствие изменения температуры или других параметров (давления, концентрации). [c.10]

    Примем, что теплота реакции и теплоемкость смеси остаются практически постоянными при адиабатическом режиме. Тогда изменение температуры Т для данной степени превращения х может быть выражено уравнением [c.111]

    После смешения маточного раствора с исходным температура раствора лишь незначительно увеличивается и раствор может стать несколько ненасыщенным. Тогда в этой части аппарата могут возникнуть условия для растворения циркулирующих кристаллов. Вместе с тем после смешения увеличивается и концентрация раствора и условия могут быть таковыми, что раствор может стать насыщенным либо даже перенасыщенным. Выделяющаяся скрытая теплота при кристаллизации (или поглощающаяся при растворении) изменяет температуру раствора. Изменение температуры раствора приводит к изменению равновесной концентрации раствора, что влияет на рост (растворение) кристаллов. [c.178]

    При движении раствора через слой кристаллов уменьшается пересыщение раствора по высоте аппарата за счет роста находящихся в слое кристаллов. Выделяющаяся скрытая теплота кристаллизации изменяет температуру раствора, изменение температуры смеси приводит к изменению равновесной концентрации раствора, в результате чего пересыщение оказывается зависимым от [c.211]

    Коэффициенты продольной теплопроводности при нестацио парном поле температур. Теплоемкость элементов зернистого слоя значительно выше теплоемкости газа, текущего через слой. Поэтому изменение температур при нестационарных во времени процессах переноса теплоты в зернистом слое определяется балансом теплоты между фазами (см. раздел IV. 5). [c.127]

    В изотермических реакторах образующееся или потребляемое количество теплоты каким-либо способом отводится или подвозится без изменения температуры в реакторе. Сначала рассмотрим экзотермические реакции. В этом случае отвод теплоты можно осуществить только за счет теплообмена, а = О и температура отводящей теплоту среды низкая. Разность температур продукта и отводящей теплоту среды А Г при этом незначительна. Изотермические реакции можно проводить только в непрерывнодействующих реакторах, так как в реакторах периодического действия скорость тенлопереноса должна изменяться в зависимости от времени, чтобы поддерживать постоянную температуру продукта. [c.223]

    Разработка методов экспериментального определения теплот химических реакций, теплот фазовых превращений, теплот растворения и теплоемкостей, л также измерение этих величин составляет содержание калориметрии. Прямое экспериментальное определение теплоты процесса (если оно возможно) является, как правило, наиболее точным методом нахождения этой важной величины Ниже дается краткая характеристика основных калориметрическах методик Основной частью калориметрической установки является калориметр. Типы и формы калориметров разнообразны. В простейшем случае калориметр представляет собой сосуд, наполненный калориметрической жидкостью с известной теплоемкостью и окруженный мало проводящей теплоту оболочкой (вместо сосуда с жидкостью может применяться массивное металлическое тела). Изучаемый процесс проводится так, чтобы теплота процесса по возможности оыстро и полностью отдавалась калориметру (или отнималась от него) основной измеряемой величиной является изменение температуры калориметра Т. Зная теплоемкость калориметрической системы, т. е. совокупности всех дастей калориметра, между которыми распределяется поглощаемая теплота [c.75]

    Равнопесие гидролиза может быть смеш,ено также изменением температуры. Поскольку обратный гидролизу процесс — реакция нейтрализации — протекает с выделением теплоты, то реакция гидролиза представляет собой эндотермический процесс. Поэтому повышение температуры ведет к усилению гидролиза, а понижение температуры — к его ослаблению. [c.153]

    Подставим изв( стные величины теплоты iq) и изменения температуры (А/) в уравнение и учтем, что теплоемкость измерена в кал/(г "С), а q — ъ ккал  [c.241]

    Оценка выбора условий при проведении калориметрического опыта. На рис. 74 показано изменение температуры калориметра в опыте по определению теплоты растворения Na l в воде. Главному периоду соответствует отрезок ВС, наклон которого мало отличается от наклонов отрезков начального периода АВ и конечного СО. Несмотря на то, что растворение Na i — процесс эндотермический, температура в главном периоде повышается. Такое изменение температуры в ходе [c.132]

    Ло данным примера У-4. Метод расчетгт повышения температуры при обратимой мгновенной реакции отсутствует, поэтому следуя методу, предложенному в разделе У-13, оценим изменение температуры, принимая, что теплоты растворения и реакции выделяются непосредственно у поверхности. Используем уравнение (У,144), модифицированное в соответствии с приведенными выше рекомендациями [c.142]

    Стандартные топлива по хладоресурсу различаются незначительно (максимально на 32 кДж/кг при изменении температуры от —60 до +400°С). При утяжелении фракционного состава топлива разного группового углеводородного состава по теплоте сгорания и хладоресурсу сближаются между собой и становятся теоретически одинаковыми при п—>-оо (п — число атомов С в приведенной молекуле топлива С Нт). [c.112]

    Теплоту можно выразить через изменение температуры ДГ в рассматриваемом объеме V за время т. Если р — плотность, а с — удельная теплоемкость вещества, то, учитывая, чтор7 есть масса вещества в объеме V, получим  [c.63]

    Теплоты гидрокрекинга нормальных и изоструктур парафинов, а также ксилолов рассчитаны методами химической термодинамики. Теплоты реакций незначительно меняются с температурой для расчетов АГад теплоты реакций определены для температурных интервалов, характеризующих технические процессы. Заметим, что даже значительные изменения температуры реакций могут изменить величину АГад не больще чем на один градус. [c.164]


Смотреть страницы где упоминается термин Теплота изменение с температурой: [c.135]    [c.33]    [c.204]    [c.148]    [c.154]    [c.155]    [c.158]    [c.90]    [c.141]    [c.251]    [c.167]    [c.238]   
Общая химия (1968) -- [ c.187 ]




ПОИСК





Смотрите так же термины и статьи:

Изменение температуры

Теплота от температуры



© 2025 chem21.info Реклама на сайте