Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия ионных реакций

    Пероксид водорода разлагается в водных растворах на кислород и воду. Реакцию ускоряют как неорганический катализатор (ион Ре +), так и биоорганический (фермент каталаза). Энергия активации реакции в отсутствие катализатора 75,4 кДж/моль. Ион Ре + снижает ее до 42 кДж/моль, а фермент каталаза — до 2 кДж/моль. Рассчитайте соотношение скоростей реакции в отсутствие катализатора в случаях присутствия Ре и каталазы. Какой вывод можно сделать [c.59]

    При растворении реагента А в растворителе 2 происходит физикохимический процесс взаимодействия молекул растворителя с молекулами А с образованием сольватов различной степени сольватации (см. П9). Иногда образуются комплексные химические соединения. В растворах электролитов растворяющееся вещество полностью или частично распадается на ионы, энергия гидратации которых соизмерима с энергией химических реакций. Если при растворении не образуется химических соединений растворенного вещества с растворителем, процесс растворения одного моля к ь т молях 2 можно записать в виде уравнения [c.591]


    Касаясь вопроса о возможной активности данного катализатора, важно заметить, что само по себе существование химически ненасыщенных центров на поверхности твердого вещества еще не гарантирует каталитической активности. Если эти активные центры обладают достаточно большой свободной энергией, они будут стабилизироваться за счет образования перманентных химических связей либо с реагирующими веществами, либо с любыми примесями, что эквивалентно отравлению катализатора . Для того чтобы обладать эффективными каталитическими свойствами, ненасыщенные (или активные) центры должны образовывать слабые или лабильные связи с реагирующими веществами. Это — веское обоснование каталитических свойств воды (действующей как растворитель), заключающихся в облегчении протекания ионных реакций. [c.532]

    Образование свободных радикалов может происходить в процессе распада вещества при нагревании, освещении, под действием ядерных излучений, от сильных механических воздействий, при электроразряде и т. д. Свободные радикалы рождаются также в процессе самых разнообразных химических превращений. Энергия активации реакций с участием ионов также н значительна (0—80 кДж/моль). Для осуществления же реакций непосредственно между молекулами обычно требуется высокая энергия активации, поэтому такие реакции весьма редки.,  [c.199]

    В третьем способе изменение состава раствора нарушает ионное равновесие и вызывает химическую реакцию, в ходе которой происходит восстановление ионного равновесия. Ионные реакции в растворах электролитов представляют собой частный случай гомогенных химических реакций и изучаются в основном химической кинетикой. Отличительной особенностью многих из них является большая скорость по сравнению с другими процессами в растворах. Некоторые из ионных реакций, например ассоциация аниона кислотного остатка и иона гидроксония, идут без энергии активации и характеризуются константами скорости порядка 10 л/моль-с. [c.53]

    Изложенный выше подход для определения влияния растворителя на скорость ионных реакций был применен и к реакциям между ионами и полярными молекулами. Исходя из электростатических представлений, Кирквуд [16] вывел уравнение изменения свободной энергии при сольватации сферической полярной молекулы радиусом г и динольным моментом [c.37]

    Чтобы применять метод переходного состояния к реакциям с участием заряженных или полярных частиц, необходимо знать зависимость коэффициентов активности этих частиц от условий эксперимента. Электростатические взаимодействия проявляются на большом расстоянии на заряженные частицы в растворе влияют не только ближайшие соседние частицы, но и ионы и молекулы, находящиеся на довольно значительном расстоянии. Любые изменения удаленных частиц будут влиять на потенциальную энергию ионов и, таким образом, на их коэффициент активности. Для удобства можно разделить эти взаимодействия на два типа взаимодействие ионов с другими ионами в растворе и взаимодействие ионов с нейтральными полярными или неполярными молекулами. [c.446]

    Но обсуждаемая здесь полуреакция в действительности не происходит. Если в системе одновременно присутствуют ионы Ее и металлическое железо, они самопроизвольно взаимодействуют с образованием ионов Ре , в чем можно убедиться, рассматривая свободные энергии соответствующих реакций  [c.182]

    Источники активации могут быть самые разнообразные. Реакции между ионами в растворе происходят с небольшой энергией активации, которая требуется для дегидратации ионов. Реакции между свободными атомами и радикалами не требуют энергии активации, так как атомы и радикалы являются активными частицами. В гомогенных газовых реакциях основным источником активации служат особо благоприятные столкновения, доля которых определяется законом распределения Больцмана и растет с температурой. В гетерогенных каталитических реакциях источниками активации могут служить изменения, протекающие в реагирующих молекулах при адсорбции их поверхностью катализатора. [c.335]


    Согласно более ранней, имеющей почти полуторавековую историю, гетерогенной трактовке процессов электрохимической коррозии металлов (теории локальных элементов), участки анодной и катодной реакций пространственно разделены и для протекания коррозии необходим переток электронов в металле и ионов в электролите. Такое пространственное разделение анодной и катодной реакций энергетически более выгодно, так как они локализуются на тех участках, где нх прохождение облегчено (энергия активации реакции меньше). [c.186]

    При рассмотрении реакций, протекающих без пороговой энергии (что имеет место, например, в ион-ионных реакциях), задача упрощается, и преобразование Лапласа производится без сдвига аргумента. [c.217]

    Сначала рассмотрим более общий случай исключения влияния межфазного массопереноса. Характер температурной зависимости (энергия активации) не может служить в жидкофазных реакциях надежным критерием оценки по ряду причин. Вследствие возможного клеточного диффузионно-контролируемого механизма или ионного характера реакции истинная энергия активации реакции может быть малой. Далее, как указывалось в предыдущем разделе, наблюдаемая температурная зависимость может быть следствием изменения коэффициентов распределения реагентов между фазами. Вблизи критической области такое влияние может быть особенно сильным и сказывается такнлб на соотношении объемов фаз. Наконец, в жидкостях, в отличие от газов, сам коэффициент диффузии зависит от температуры экспоненциально, причем эффективная энергия активации диффузии в вязких жидкостях составляет заметную величину. Поэтому обычно о переходе в кинетическую область судят ио прекращению зависимости скорости реакции от интенсивности перемешивания или барботажа. Здесь, однако, есть опасность, что при больших скоростях перемешивания может наступить автомодельная область, а ири очень интенсивном барботаже измениться гидродинамический режим. В результате объемный коэффициент массопередачи может стать инвариантным к эффекту перемешивания и ввести, таким образом, в заблуждение исследователя. В трехфазных каталитических реакторах этот прием более надежен ири условии неизменности соотношения фаз в потоке. [c.74]

    Общие кинетические закономерности протекания элементарных реакций не зависят от того, какие именно частицы — молекулы, свободные радикалы, ионы или комплексы — принимают участие Б элементарном акте химического превращения. Природа частиц определяет лишь величину константы скорости реакции или, точнее, величины предэкспоненциального множителя н энергии активации реакции. Здесь и далее рассматривается зависимость этих величин от природы реагирующих частиц и от среды, в которой протекает реакция, [c.101]

    Положим, что ионная реакция протекает в полярном растворителе (е > 30) прн концентрациях, исключающих ассоциацию ионов. Энергию Гиббса образования активированного комплекса (не следует смешивать с энергией активации в уравнении Аррениуса) можно представить как сумму отдельных вкладов  [c.261]

    Последнее выражение позволяет провести количественную оценку кулонов-ского вклада а энергию активации ионной реакции, знак и значение которого определяется знаками и величиной зарядов реагирующих ионов. [c.263]

    Поскольку в ионных реакциях принимают участие заряженные частицы, энергия активации реакций ионов с молекулами и в особенности между ионами противоположного знака незначительна (О—80 кдж/моль). [c.216]

    Максимальный эффект ускорения, наблюдаемый для сложного эфира (I, г), достигает 15 раз (при экстраполяции ки на нулевую ионную силу, рис. 18). Это соответствует понижению свободной энергии активации реакции примерно на 1,5—2 ккал/моль (6,3—8,4 кДж/моль), что, по-видимому, представляет собой максимальное значение, которое можно ожидать для реакций с участием одних низкомолекулярных веществ [5], Значительно большие электростатические эффекты наблюдаются для макромолекулярных систем полимеров и мицелл (см. 4 и бэтой главы), где существуют сильные электростатические поля, обеспечивающие более сильное притяжение ионов. [c.74]

    В результате которой атомы цинка окисляются, а ионы меди восстанавливаются. При таком проведении процесса энергия химической реакции превращается в тепловую энергию, но если провести процессы окисления и восстановления раздельно и осуществить передачу электронов через внешнюю цепь, можно использовать энергию химической реакции для совершения работы. В этом случае электрохимическая цепь действует как источник тока. [c.215]

    Как видно из рис. 150, а, энергия активации реакции разряда д определяется разностью ординат точек А и О. Если при изменении потенциала электрода потенциальная кривая иона Н3О " переместилась параллельно самой себе в положение V, то изменение энергии активации Д д = а — Е к можно связать с изменением энергии началь- [c.294]

    Механизм элементарного акта ионных реакций можно трактовать при помощи поверхностей потенциальной энергии системы в начальном и конечном состояниях. Для простейших реакций электронного переноса, не сопровождающихся изменением структуры иона, в качестве координаты реакции (т. е. того параметра, который претерпевает изменение в ходе процесса) следует выбрать некоторую обобщенную координату у, характеризующую конфигурацию диполей среды. На рис. 26 представлены одномерные потенциальные кривые начального и конечного состояний системы для таких реакций. Исходной равновесной конфигурации диполей растворителя отвечает координата , а конечной — yf. Координата характеризует ориентацию диполей растворителя в переходном состоянии реакции. Кривая 1 получена суммированием потенциальной энергии системы растворитель + за- [c.87]

    В то же время любая электрохимическая реакция приводит к изменению заряда реагирующих частиц и, следовательно, вызывает перераспределение диполей растворителя, окружающих эти частицы. Такая реорганизация растворителя, как показывают теоретические расчеты, также сопровождается значительным изменением потенциальной энергии, а потому может служить основой для построения кривых потенциальной энергии, в которых путь реакции представляет собой некоторую обобщенную координату (у), характеризующую распределение диполей растворителя. По современным представлениям реорганизация растворителя является определяющим фактором в ходе элементарного акта разряда, хотя в общем случае необходимо рассматривать также энергию растяжения химических связей в реагирующих частицах. Концепция реорганизации растворителя приводит к следующему механизму элементарного акта в стадии разряда — ионизации. Согласно принципу Франка — Кондона, переход электрона без излучения или поглощения квантов энергии возможен лишь при условии, что полные энергии электрона в начальном и конечном состояниях приблизительно одинаковы. Выравнивание электронных уровней начального и конечного состояний происходит под действием тепловых флуктуаций растворителя. Когда в результате этих флуктуаций распределение диполей растворителя в зоне реакции оказывается таким, что оно одновременно соответствует и начальному, и конечному состояниям (см. точку А на рис. 79), то появляется вероятность квантовомеханического (туннельного) перехода электрона из металла на реагирующую частицу. Если такой переход осуществляется, то система переходит на потенциальную кривую конечного состояния и релаксирует по ней до равновесной координаты г/у. Таким образом, в наиболее простых электродных процессах энергия активации обусловлена реорганизацией диполей растворителя, необходимой для квантовомеханического перехода электрона из начального в конечное состояние. Напомним, что точно такой же механизм имеют и простейшие ионные реакции в объеме раствора (см. гл. IV). Характерной особенностью электродных процессов является то, что в них начальный уровень [c.186]


    Концепция реорганизации растворителя приводит к следующему механизму элементарного акта в стадии разряда — ионизации. Согласно принципу Франка — Кондона, переход электрона без излучения или поглощения квантов энергии возможен лишь при условии, что полные энергии электрона в начальном и конечном состояниях приблизительно одинаковы. Выравнивание электронных уровней начального и конечного состояний происходит под действием тепловых флуктуаций растворителя. Когда в результате этих флуктуаций распределение диполей растворителя в зоне реакции оказывается таким, что оно одновременно соответствует и начальному, и конечному состояниям (см. рис. УП1.10, точка А), то появляется вероятность квантово-меха-нического (туннельного) перехода электрона из металла на реагирующую частицу. Если такой переход осуществляется, то система переходит на потенциальную кривую конечного состояния и релаксирует по ней до равновесной координаты у . Таким образом, в наиболее простых электродных процессах энергия активации обусловлена реорганизацией диполей растворителя, необходимой для квантово-механического перехода электрона из начального в конечное состояние. Напомним, что точно такой же механизм имеют и простейшие ионные реакции в объеме раствора (см. гл. IV). Характерной особенностью электродных процессов является то, что в них начальный уровень электрона можно варьировать в широком интервале, изменяя потенциал электрода. [c.220]

    Влияние е на энергию активации. Для ионных реакций можно выделить из вклад электростатического взаимодействия и учесть [c.130]

    Из этого следует, что табл. IX.3 эквивалентна таблице свободных энергий ионов и, следовательно, может быть использована для расчетов равновесий. Очевидно, стандартная свободная энергия иона I определяется уравнением АО] = —v °i или, учитывая соотношение между электрон-вольтами и калориями, АО = —v E / 23050 кал (здесь VI — заряд иона). Таким образом, при помощи табл. 1Х.З можно определить направление реакций в растворах. Покажем это на примере реакции окисления двухвалентного железа хлором  [c.181]

    Еще более сложное, но не более строгое приближение было сделано Мельвин-Хьюзом [65], который при подсчете энергии ион-дипольйого взаимодействия учел эффект поляризации и силы отталкивания. Чтобы получить величину взаимодействия диполь — растворитель, была использ ована [66] модель Онзагера для диполя, окруженного оболочкой из молекул растворителя. Авторы воспользовались уравнением Пуассона для того, чтобы оценить влияние ионной оболочки на диполь. Полученные в этом случае ч )ормулы слишком сложны и вряд ли могут быть успешно применены для обработки экспериментальных результатов. Влияние ионной силы в реакциях между ионом и диполем может сказываться не только на специфических взаимодействиях. Для положительных ион-дипольных взаимодействий (0 > 90°) ориентация диполя приведет к тому, что поле иона будет уменьшать поля диполя. В результате следует ожидать, что ионная атмосфера оболочка), окружающая как свободный диполь, так и комплекс, образующийся при взаимодействии иона с диполем, будет гораздо сильнее стабилизировать свободный диполь. Это будет приводить к уменьшению скорости с увеличением ионной силы. В случае отрицательного взаимодействия увеличение ионной силы раствора вызывает увеличение скорости реакции. К сожалению, экспериментальных результатов, которые могли бы подтвердить эти выводы, до сих пор нет. Основная трудность здесь заключается в том, что до сих пор не было сделано ни одной попытки сравнить действие ионов и ионных пар в качестве реагентов [68]. Сложность модели сама по себе достаточно велика, и, по всей видимости, любое из соотношений, которое может быть выведено, сможет получить лишь качественное подтверждение. [c.459]

    Как было указано выше, для образования ионов карбония требуется либо отщепление атома водорода посредством разрыва углерод-водородной связи, либо присоединение атома водорода с образованием новой углерод-водородной связи. В связи с этим для теории таких механизмов приобретают большое значение накопленные экспериментальные данные, показывающие большую реакционную способность третичных углерод-водородных связей сравнительно со вторичными связями С —Н и последних сравнительно с первичными при диссоциациях ионного типа (крекинге) и реакциях присоединения. Относительная реакционная способность третичных, вторичных и первичных углерод-водородных связей в термических реакциях через свободные радикалы соответственно меньше. Далее будет показано, что в силу вышесказанного третичные и вторичные структуры играют доминирующую роль в механизме ионных реакций. Приведенное отношение между реакционными способностями связей С —Н основано на данных, полученных нри масс-снектрометрическом измерении потенциалов образования различных алкил-ионов. Потенциалы образования алкил-ионов вместе с соответствующими термодинамическими данными и данными по энергиям диссоциации связи для углеводородов дают величину энергии, необходимую для получения алкил-ионов из родственных им углеводородов эта величина энергии может быть качественно коррелирована с относительной реакционной способностью первичных, вторичных и третичных углеводородных структур как в случае низкотемпературных реакций присоединения, так и при высокотемпературной диссоциации (ионных процессах). Аналогично определяемая энергия сво-бодноради1 альной диссоциации связи С — Н [37, 39] отражает гораздо меньшее различие в реакционной способности разных типов С — Н связей в случае термических свободиораднкальных реакций таким образом, существует явный нараллелизм между экспериментальными данными каталитического и термического крекинга и энергетикой предложенных механизмов. [c.115]

    Энергия этой реакции должна равняться сумме энергии разрыва связи СНз-С,Нз и энергии ионизации радикала СаИб" Потенциал появления иона при диссоциации этана равен 15,2 в пли [c.77]

    Если энергия активации очень мала (меньше 40 кДж/моль), то это означает, что значите и>ная част1> сто.пкновеннй между частицами реа1 ирующих веществ приводит к реакции. Скорость такой реакции велика. Примером реакций, энергия активации которых ничтожно мала, могут служить ионные реакции в растворах, оводящиеся обычно к взаимодействию разноименно заряженных ионов опыт показывает, что такие реакции протекают практически мгновенно. [c.177]

    Одним из путей протекания элементарного ионно-молекулярного процесса является путь чорез долгоживующий комплекс. Существование таких комплексов было доказано Тальрозе и Франкевичем [130] для реакции НзО - - НаО —> Н3О+ при помощи измерения начальной кинетической энергии ионов НдО+ и Потти и Хемиллом (см. [466]) путем прямого наблюдения долгоживущих образований. [c.193]

    Влияние среды на кинетику реакций с участием нонов. Насколько велика роль среды, в которой протекает ионная реакция, можно видеть из следующего примера. Распад молекулы НС1 в газовой фазе на атомы водорода и хлора требует затраты тепла 103 ккал/моль, а распад на ионы Н и С — 330 ккал/моль, поэтому раопад на ионы неосуществим. При растворении же НС1 в воде легко идет диссоциация НС1 на ионы. Затраты энергии на разрыв связи Н —С1" компенсируются в этом случае взаимодействием ионов с молекулами воды, и из значения энергии разрыва связи видно, что взаимодействие это очень сильное. [c.162]

    В. Так как э. д. с. отрицательна, ток самопроиз-вольИо течет в элементе справа налево. Это определяет истинную полярность элемента, причем левый электрод — Си— является положительным (катодом), а правый — 2п — отрицательный (анодом). Из соотношения АО = —ЕпЕ видно, что изменение свободной энергии в реакции (10) положительно, значит, эта реакция самопроизвольно протекает не по уравнению (10), а в обратном направлении. Другими словами, когда от элемента отводят ток, ионы Си + разряжаются на медном электроде, а цинковый электрод корродирует. [c.36]

    Реакции переноса электрона. Реакции переноса электрона, являясь простейщим типом химического процесса, весьма распространены в фотохимии. Перенос электрона, происходящий при взаимодействии возбужденных молекул с донорами или акцепторами электрона, связан с тем, что при возбуждении молекул уменьщаетсч их потенциал ионизации и возрастает сродство к электрону. Такое взаимодействие возбужденных молекул с донорами и акцепторами электрона приводит к различным химическим и физическим процессам. В малополярных растворителях часто наблюдается образование возбужденных комплексов переноса заряда — эксиплексов. В полярных растворителях, где сольватация понижает энергию эксиплексов, реакция их образования становится необратимой и образуются иоп-радикальпые пары и свободные ион-радикалы. Образование эксиплексов и ион-радикалов может быть представлено следующей схемой  [c.176]

    Этот ион может далее взаимодействовать по ионному илк радикальному механизму. Так как для ионных процессов энергии активации реакции роста мень.ше, чем для радикальных процессов, то при низкой температуре будет происходить ионная полимеризация, а при повышенной—радикальная. В первом случае свободные радикалы взаимодействуют друг с другом с образо ванием бииона, который может расти в обе стороны  [c.142]

    Механизм элементарного акта ионных реакций можно трактовать при помощи поверхностей потенциальной энергии системы в начальном и конечном состояниях. Для простейших реакций электронного переноса, не сопровождающихся изменением структуры иона, в качестве координаты реакции (т. е. того параметра, который претерпевает изменение в ходе процесса) следует выбрать некоторую обобщенную координату у, характеризующую конфигурацию диполей среды. На рис. IV. 14 представлены одномерные потенциальные кривые начального и конечного состояний системы для таких реакций. Исходной равновесной конфигурации диполей растворителя отвечает координата уи а конечной— У/. Координата у характеризует ориентацию диполей растворителя в переходном состоянии реакции. Кривая 1 получена суммированием потенциальной энергии системы растворитель+заряженные частицы и полной энергии электрона при различных значениях обобщенной координаты у в исходном состоянии. Сумму указанных величин называют также электронным термом. Кривая 2 представляет электронный терм конечного состояния. Так как в первом приближении термы можно аппроксимировать параболами, то для энергии активации а на основе простых геометрических соотношений получаем следующее уравнение  [c.97]

    Влияние 8 на энергию активации. Для ионных реакций можно выделить из Е вклад электростатичес кого взаимодействия и учесть влияние изменяющейся с температурой е. Пусть для реакции А + В [c.97]


Смотреть страницы где упоминается термин Энергия ионных реакций: [c.395]    [c.134]    [c.117]    [c.602]    [c.109]    [c.224]    [c.65]    [c.84]    [c.184]    [c.341]    [c.190]    [c.602]    [c.178]    [c.3]   
Общая химия (1968) -- [ c.278 ]




ПОИСК





Смотрите так же термины и статьи:

Ионы энергия,

Реакции энергия реакций

Энергия ионов



© 2025 chem21.info Реклама на сайте