Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

кислород свойства, строение

    Цикл Свойства веществ в свете атомно-молекулярной теории включает передачи Химия вокруг нас , Свойства жидкого кислорода , Свойства водорода , Свойства воды , М. В. Ломоносов — основоположник атомно-молекулярной теории , Анализ и синтез воды , Очистка воды . В этих передачах актуализированы понятия о многообразии свойств веществ (молекулярного и немолекулярного строения), зависимости их свойств от состава и строения. Рассматриваются свойства и получение в лаборатории впервые изучаемых учащимися простых веществ — кислорода и водорода. Основная цель этого цикла — пробудить у учащихся интерес к изучению предмета. Поэтому передачи цикла насыщены эффектными опытами, недоступными или малодоступными для учителя средней щколы. [c.91]


    Как уже отмечалось, некоторые свойства сернистых соединений определяются тем, что сера является ближайшим аналогом кислорода. Свойства некоторых органических соединений серы вполне сходны со свойствами соединений кислорода того же строения. Так, меркаптаны — ближайшие аналоги спиртов, сульфиды — аналоги простых эфиров и т. д. [c.25]

    Так, из исследованных высокополимеров напболее эффективными в отношении улучшения вязкостно-температурных свойств масел оказались высокополимеры, содержащие в своем составе кислород нормальное строение боковых цепей этих полимеров способствует большей эффективности их. [c.47]

    Строение атома водорода. Изотопы водорода. Активность атомарного и молекулярного водорода. Способы получения водорода и его свойства. Водород как восстановитель и окислитель. Гидриды металлов. Строение атома кислорода. Получение кислорода и озона, их свойства. Строение молекулы озона. Кислород и озон как окислители. [c.80]

    Наиболее высокая температура пламени — до 1500 °С — достигается в почти бесцветной зоне 3, где горение газа проходит наиболее энергично благодаря большому притоку воздуха. Эта часть пламени называется окислительной , при нагревании в ней вещество соединяется с кислородом. Зная строение пламени, легко сделать практический вывод. Пользуясь горелкой, не следует нагреваемый предмет глубоко опускать в пламя необходимо его помещать так, чтобы верхняя, наиболее горячая часть пламени лишь слегка касалась предмета. Тогда нагревание будет наиболее эффективным. Использование окислительных и восстановительных свойств пламени указывается в соответствующих работах. [c.17]

    Такая формула кислорода не вполне точно выражает его свойства. В особенности она не объясняет, почему кислород парамагнитен и имеет радикальный характе действительности молекула кислорода имеет строение бирадикала -О—О (спины ) — триплетный кислород . Изобра- [c.11]

    По-видимому, отличие а-полихлоропрена от р,- и м-полимеров заключается в том, что а-полимер имеет линейное строение, а х- и со-полимеры — трехмерное. Естественно, что это не обнаруживается при озонировании, так как участки цепи, связывающие макромолекулы, при расщеплении озонидов также дают янтарную кислоту. Те же результаты должны получаться, если связь между молекулами осуществляется с участием кислорода. Трехмерное строение х-поли-мера подтверждается способностью а-полимера при хранении и нагревании переходить в ц-форму. Этот процесс можно замедлить добавлением фенил-р-нафтиламина (неозона). Изменение физико-механических свойств при переходе а-полимера в -полимер аналогично изменениям, происходящим в процессе вулканизации натурального каучука. Обычно а-полихлоропрен вулканизуют без серы. При хранении даже при комнатной температуре он отщепляет хлористый водород. [c.414]

    Свойства синтетических полимеров зависят как от величины их молекулярной массы, так и от строения звена. Большинство синтетических полимеров — органические соединения, среди них различают карбоцепные полимеры, у которых в цепь атомов звена входят только атомы углерода, и гетероцепные полимеры, цепи которых содержат также атомы кислорода, азота, серы и т. д. За последние годы большое значение приобретают элементоорганические, в особенности кремнийорганические, полимеры, содержащие в цепи звена атомы кремния и кислорода. Помимо строения цепи, большое влияние на свойства полимеров оказывают функциональные группы (С1, F, N, ОН), содержащиеся в звеньях. [c.287]

    За последние годы большое значение приобретают элементоорганические, в особенности кремнийорганические, полимеры, содержащие в цепи звена атомы кремния и кислорода. Помимо строения цепи, большое влияние на свойства полимеров оказывают функциональные группы (С1, Р, СЫ, ОН), содержащиеся [c.256]


    С позиций химии нефть — сложная исключительно многокомпонентная взаиморастворимая смесь газообразных, жидких и твердых углеводородов различного химического строения с числом углеродных атомов до 100 и более с примесью гетероорганических соединений серы, азота, кислорода и некоторых металлов. По химическому составу нефти различных месторождений весьма разнообразны. Поэтому обсуждение можно вести лишь о составе, молекулярном строении и свойствах "среднестатистической" нефти. Меиее всего колеблется элементный состав нефтей 82,5 — 87 % углерода 11,5—14,5 % водорода 0,05 —0,35, редко до 0,7 % кислорода до 1,8 % азота и до 5,3, редко до 10 % серы. Кроме названных, в нефтях обнаружены в незначительных количествах очень многие элементы, в т. I. металлы (Са, Мд, Ре, А1, 51, V, N1, Ыа и др.). [c.59]

    Упомянутые в разделе 4.1 поверхностно-активные вещества (ПАВ) способны изменять фазовые и энергетические взаимодействия на поверхностях раздела. Это свойство обусловливается особенностями их химического строения, а также условиями использования (температурой, характером среды, концентрацией, состоянием фаз на границе раздела). Поверхностно-активными свойствами, как правило, обладают соединения, содержащие в молекуле углеводородный радикал и одну или несколько активных (функциональных) групп. Роль последних обычно играют группы, содержащие кислород, азот, серу или фосфор, а также серу и фосфор одновременно. [c.196]

    Существуют соединения элементов с кислородом, которые по составу относятся к классу оксидов, но по своему строению и свойствам принадлежат к классу солей. Это так называемые пероксиды, или перекиси. [c.31]

    Дать характеристику молекулярного кислорода Ог, указав а) его химические свойства б) строение молекулы по методу МО в) магнитные свойства молекулы. С какими простыми веществами кислород непосредственно не взаимодействует  [c.224]

    Например, для всех растений жизненно важное значение имеет зеленый координационный комплекс магния, известный под названием хлорофилла. Комбинация магния и координированных вокруг него групп придает хлорофиллу электронные свойства, которыми не обладает данный металл или его ион в частности, хлорофилл способен поглощать видимый свет и использовать его энергию для химического синтеза. Все организмы, которые дышат кислородом, нуждаются в цитохромах, координационных соединениях железа, которые играют важную роль в процессах расщепления и сгорания пищи, а также в накоплении высвобождающейся при этом энергии. Более сложные организмы нуждаются в гемоглобине-еще одном комплексе железа благодаря координированным к железу группам гемоглобин связывает молекулы кислорода, не окисляясь при этом. Многие области биохимии на самом деле представляют собой не что иное, как прикладную химию координационных соединений переходных металлов. В данной главе мы познакомимся со строением и свойствами некоторых координационных соединений. [c.205]

    Можно объяснить изложенные выше экспериментальные данные, исходя из современных представлений о зависимости между физическими свойствами и химическим строением органических соединений, а также из данных о прочности связей углерода с углеродом, водородом, кислородом и азотом (86, 146, 149, 208, 212]. Каждому температурному пределу соответствует определенное количество разложившихся сернистых соединений в коксе, которое (находится в определенной зависимости от энергетических состояний внутри его молекул. [c.156]

    Различные виды твердого топлива в той или иной степени реагируют с кислородом и другими окислителями в зависимости от их свойств и молекулярной структуры. Изучение процессов окисления углей и полученных при этом продуктов является одним из направлений исследования молекулярного строения твердого топлива. Кроме того, окисление углей и изменение их свойств при хранении в естественных условиях имеет большое практическое значение. [c.162]

    Смолистые вещества присутствуют в топливах в малых количествах (сотые и десятые доли процента), возрастающих с моле-кулЯ рной массой топлива. Тем не менее они оказывают значительное влияние на эксплуатационные свойства топлив и надежность работы двигателей, поскольку по химической природе и физическим свойствам резко отличаются от углеводородов топлива. Под смолами в топливах понимают окрашенные в темно-коричневый цвет полярные вешества сложного строения,, в молекулы которых входят кроме углерода и водорода гетероатомы — кислород, азот, сера — порознь или совместно (в циклы или в мости-ковые связи). [c.166]

    Передачи на урок (телелекции и телевставки) подразделяют на тематически приуроченные ( Свойства жидкого кислорода , Свойства водорода , Производство алюминия и др.) и тематически лабильные (скользящие) передачи ( Окислительно-восстановительные реакции , Классификация химических реакций , Развитие теории строения А. М. Бутлерова в свете современных электронных представлений и др.). Такая классификация чрезвычайно важна для учителя. Тематически приуроченная передача должна быть принята учителем именно на том уроке, к которому она предназначена. Тематически лабильная телепередача может быть принята на различные уроки по данной теме. [c.87]

    К —органический радикал, один из атомов углерода в коп непосредственно связан с атомом кремния и одновремен атомом кислорода. По строению эти вещества напоминают 1 ны, но между кремнием и кислородом не существует дво связи. Именно это обстоятельство и делает силиконы способ к полимеризации. В 1900 г. Фр. Киппинг, применив синтез ньяра, получил ряд кремнийорганических соединений. Однак начала второй мировой войны исследования в области Х1 силиконов носили лишь академический характер. Перевор этой области относится к 1937 г., когда советский уче К- А. Андрианов (1904) разработал способ получения сил новых смол путем гидролиза органических производных алкс силанов. В 1939 г. К. А. Андрианов и одновременно М. М. К (1908) синтезировали кремнийорганические полимеры п гидролиза и конденсации эфиров ортокремниевой кислоты р казали, что полученные вещества обладают ценными в пра -ческом отношении свойствами.  [c.238]

    Накопление экспериментальных данных относительно быстро засг вило отказаться от первоначальных вариантов а и б , которым противоречит высокая стабильность соединений, отсутствие характерных для перекисей окислительных свойств, восстановление в ряде случаев до фуразанов. Выбор между формулами в и г сделан в результате изучения изомерии алифатических фуроксанов. Существование двух изомеров обнаружено только для фуроксанов с различными радикалами при углеродных атомах и поэтому может быть вызвано не различным строением гетероцикла, а расположением вне кольца одного из кислородов. Несимметричная структура алифатических фуроксанов (формула г ) общепризнана после исследования Мейзенгеймера с сотрудниками , подтвержденного через несколько лет Киннеем . Мей-зенгеймер показал, что при окислении - - и 8-(амфи)-диоксимов /1-метоксибензила образуются два изомерных фуроксана, отличающихся друг от друга положением находящегося вне кольца атома кислорода. Их строение доказано обратным восстановлением в соответствующие алефы-диоксимы и озонированием . При окислении анти- и сын-диоксимов п-метоксибензила получена смесь тех же изомеров  [c.108]


    Кисломд. Строение атома и химические свойства. Реакции окисления в горения. Окисление кислородом в нейтральной и щелочной среде. Методы получения кислорода. Озон. Строение молекулы и химические свойства. Способы получения озона. [c.146]

    Основными компонентами нефтяных масел являются углеводороды смешанного строения, содержащие одновременно структурные элементы нафтено-парафинового, парафино-ароматического или парафино-нафтено-ароматического характера. Углеводородов, содержащих только нафтеновые или ароматические циклы и лишенные боковых алкильных цепей, в маслах практически нет. Отсутствуют в товарных маслах и нормальные парафиновые углеводороды, так как при производстве масел обычно применяется глубокая депарафинизацня. Кроме углеводородов в маслах имеются и разнообразные гетероорганические соединения, содержащие серу, кислород, азот, а также различные металлы. Все это вносит большую сложность в изучение зависимости эксплуатационных свойств масел (в том числе и стабильности против окисления) от их химического состава. [c.65]

    Определение молекулярной массы серы но понижению температуры замерзания ее растворов в бензоле приводит к заключению, что молекулы серы состоят из восьми атомов (5а). Пз таких же молекул имеюнгпх кольцевое строение, построены кристаллы ромбической и моноклинной серы. Таким образом, различие в свойствах кристаллических модификаций серы обусловлено не различным числом атомов в молекулах (как, например, в молекулах кислорода и озона), а иеодниаковой структурой кристаллов. [c.381]

    Ион водорода и водородная связь. В 1887 г. М. А. Ильинский высказал и ооосновал утверждение, что хотя водородный атом может соединяться валентной связью лишь с одним атомом, но в случаях связи с кислородом или азотом тяготеть может к двум таким атомам . Близкие к этому взгляды высказал примерно в то же время Н. И. Бекетов. Развитие наших знаний о строении и свойствах молекул подтвердило это и привело к открытию еще одной своеобразной формы связи как между атомами, принадлежащими различным молекулам, так и между атомами одной и той же молекулы. Это — связь через водородный атом. [c.82]

    Изучение строения и свойств кристаллических тел, получившее сильное развитие в последнее время, выявило, в частности, что наряду с соединениями, в которых элементы проявляют обычные степени окисления, существует довольно много соединений, не отвечающих им, которые называют соединениями нестехиометриче-ского состава. Так, соединение состава РеО является неустойчивым в обычных условиях и вместо него реально существует соединение состава Рео.мтО, которое устойчиво в кристаллическом состоянии. Причины таких соотношений могут быть различными. В приведенном примере они связаны с более высокой концентрацией вакансий атомов железа, чем вакансий атомов кислорода при обычном в атмосферных условиях парциальном давлении кислорода в воздухе. [c.346]

    Что касается горючих газов, то обычно считается, что основная опасность, ими вызываемая, - это ожоги, а для взрывоопасных газов основная опасность состоит в создании избыточного давления при взрыве. Однако эта опасность не связана с химическим строением веществ, в то время как токсические свойства определяются химической природой соединений (их строением). Например, симптомы поражения человека при краткострочном воздействии больших концентраций хлора, моноксида углерода и сероводорода совершенно различны. Хлор действует раздражающе на легкие человека, и главной причиной смерти в этом случае является удушье, так как в легких образуется большое количество мокроты, выделяющейся в ответ на раздражение хлором, и дыхание становится невозможным. Моноксид углерода соединяется с гемоглобином крови и блокирует подачу кислорода к тканям организма. Сероводород парализует деятельность центральной нервной системы. [c.358]

    Окисление часто используется как метод изучения свойств и молекулярного строения различных по происхождению твердых топлив. Для этой цели применяются различные окислители — кислород, озон, НЫОз, КМПО4, Н2О2, хромовая и серная кислоты и др. При окислении твердых топлив получаются разнообразные продукты вода, окись и двуокись углерода., низкомолекулярные кислоты (уксусная, щавелевая, пропионовая, масляная), различные фталевые и бензолкарбоновые кислоты и др. Каменные угли дают темно-окрашенные кислоты. В их состав наряду с гуминовыми входят алифатические дикарбоновые, различные бензолкарбоновые и многоядерные ароматические кислоты. [c.166]

    Прошедшее с тех пор время внесло, конечно, весьма существенные изменения в общую картину состояния проблемы. Сильно увеличилось число исследований в области высокомолекулярных соединений нефти и расширилась их география. Значительно расширился набор экспериментальных методов разделения этих веществ на основные компоненты и анализа их элементного состава и химического строения. Унифицированы и стандартизованы методики, аппаратура и материалы, применяемые при исследовании высокомолекулярных компонентов нефти, что делает результаты более надежными, воспроизводимыми и сопоставимыми. Накоплен большой экспериментальный аналитический материал по свойствам и элементному составу неуглеводородных -Компонентов и высокомолекулярных углеводородов нефти, что позволяет сделать некоторые обобщения по элементному составу этих составляющих компонентов нефти. К сожалению, имеются серьезные расхождения по содержанию в неуглеводородных компонентах нефти такого важного элемента, как кислород, который обычно определяют по разности. Противоречия имеются и в данных по содержанию металлов (вероятно, из-за недостаточной унификации методов их определения). По-прежнему объектами исследования чаще всего служат высокомолекулярные соединения тяжелых нефтяных остатков, т. е. продукты, подвергавшиеся длительному высокотемпературному воздействию в процессах переработки и, следовательно, претерпевшие более или менее глубокие химические изменения. Особенно сильным изменениям подвергается неуглеводородная, т. е. смолисто-асфальтеновая, часть. Соединения же эти в неизменном состоянии, выделяемые из сырых нефтей и природных асфальтов в условиях, исключающих их химические изменения, изучены значительно слабее. Экспериментальных данных, позволяющих надежно и с достаточной полнотой оценить характер химических превращений высокомолекулярных компонентов нефтей в процессах высокотем- [c.44]

    Гидрирование смолы, выделенной из ромашкинской нефти, проводилось в автоклаве в присутствии катализатора WSj— —NiS—AI2O3. Смола была выделена из смеси высокомолекулярных соединений ромашкинской нефти по методике, описанной в [23], и характеризовалась следующими свойствами мол. вес 929, содержание гетероатомов более 7% ( 4% серы, 2% кислорода и 1,0% азота), отношение С/Н равно 8,9. Растворенная в бензоле и, и циклогексане смола (2—5-кратное количество растворителя) подвергалась гидрированию при рабочем давлении 300 атм, температуре 300° С, в течение 40—80 час. Здесь также наблюдались реакции обессеривания исходных фракций и насыщение их водородом без снижения молекулярных весов, что указывает на то, что основная часть атомов серы находится в исходных сераорганических соединениях не в виде мостиков, а входит в состав гетероциклов. Каталитическому гидрированию с целью установления особенностей их химического строения подвергались природные нефтяные смолы [17]. Гидрогенизат отделялся от ка-тализата, от него отгонялся растворитель (в токе азота на водяной бане), после чего гидрогенизат доводился до постоянного веса в вакууме. После общей характеристики гидрогенизат разделялся на силикагеле АСК на углеводороды и смолы по методике, описанной в [23]. [c.123]

    В монографии собран и теоретически обобщен обширный экс-аериментальный материал, характеризующий высокомолекулярную часть нефти (углеводороды, кислород-, азот- и сераорганиче-скне соединения, смолы и асфальтены). Приведены и систематизированы многочисленные данные о свойствах синтетических углеводородов, позволяющие сопоставлять строение нефтяных углеводородов и судить о нем. [c.2]

    Изучение состава, строения химических реакций и свойств гетероорганических соединений нефти особенно важно для решения такой принципиальной научной проблемы, как генезис нефти. Именно среди гетероорганических компонентов нефти встречаются соединения, в разной степени приближающиеся к соединениям чисто углеводородного характера, которые, вероятно, являются отдельными звеньями длинной цепи химических превращений, соединяющей нефть с органическим веществом растительного и животного происхождения, из которого эта нефть образовалась. Чем больше звеньев в этой цепи удастся расшифровать при помощи современных экспериментальных методов, тем ближе мы подойдем к раскрытию и правильному пониманию геохимической истории многообразных химических превращений в недрах земных от органического вещества растительного и животного происхождения до нефти. Наиболее простые по химическому составу кислород- и серусодержащие соединения являются, но-видимому, одной из последних (если не самой последней) ступенью в ряду этих превращений. Так, содержащиеся в нефтях карбоновые кислоты и сернистые соединения, как показали многочисленные экспериментальные исследования, имеют такую же или очень близкую структуру углеводородной части молекулы, как и углеводороды соответствующих фракций тех же нефтей. [c.303]

    Структура фрагментов, содержащих гетероатомы и микроэлементы. Наибольшее количество гетероатомных компонентов нефти сконцентрировано в ее смолисто-асфальтеновой части [366], чем в значительной степени определяются многие ее свойства, такие, как ассоциация, надмолекулярная структура, поверхностная активность и связанный с ней процесс извлечения нефти из пласта [367], связывание деэмульгаторов, что имеет существенное значение в процессах обезвоживания и обессоливания нефти [368]. Значительную информацию о строении серусодержащих фрагментов дают процессы каталитического гидрогенолиза [322, 369, 370]. Так, при гидрировании смол, содержащих 6—8 % серы и кислорода, были выделены гйдрогенизаты, практически не содержащие гетероатомов. При пиролизе асфальтенов выделяется сероводород, остаточные продукты имеют более низкую молекулярную массу. [c.170]

    Необычные свойства воды объясняются ее строением. Молекула воды нелинейна — угол между связями Н—О—Н равен 104°27. Связи Н—О ковалентны, однако они полярны, т. е. некоторый положительный заряд несут атомы водорода, а отрицательный — атом кислорода. Вследствие этого связанный атом кислорода способен притягивать атом водорода соседней молекулы с образованием водородной связи, что существенно повышает общую энергию связи. Таким образом, молекулы в воде ассоциированы. В кристаллах льда водородные связи еще сильнее. В силу высокой полярности молекул Н2О вода является растворителем других полярных соединений, не имея себе равных. [c.101]

    Химические свойства воды также определяются ее составом и строением. Молекулу воды можно разрушить только энергичным внешним воздействием. Вода начинает заметно разлагаться только при 2000 °С (термическая диссоциация) или под действием ультрафиолетового излучения (фотохимическая диссоциация). На воду действует также радиоактивное излучение. При этом образуются водород, кислород и пероксид водорода Н2О2. Щелочные и щелочноземельные металлы разлагают воду с выделением водорода при обычной температуре, а магний и цинк — при кипячении. Железо реагирует с водяными парами при красном калении. Вода является одной из причин коррозии — ржавления металлов (с. 156). Благородные металлы с водой не реагируют. [c.101]

    На эксплуатационные свойства топлив сильно влияют также содержание и строение гетероорганических соединений. Содержание таких соединений в топливных дистиллятах обычно увеличивается по мере их утяжеления. Кислородсодержащие соединения переходят в топливные дистилляты из нефтяного сырья и образуются при окислении углеводородов кислородом воздуха. Влияние азотсодержащих соединений на эксплуатационные свойства топлив изучено мало. Известно, что они участвуют в образовании твердого осадка при нагреве реактивных топлив до 150—200 °С. Наибольшее влияние на эксплуатационные свойства топлив, и в первую очередь на их коррозионную агрессивность, оказывают производные серы. В топливные дистилляты они попадают непосредственно пз нефти в процессах прямой перегонки или при разложении высокомолекулярных гетероорганическ.их соединений в процессах деструктивной переработки высококипящих фракций. Топлива почти всех видов необходимо очищать от серосодержащих соединений. [c.22]

    Для приготовления бентонитовых смазок используют амини-рованные бентонитовые глины — кристаллические продукты минерального происхоадения, у которых атомы кремния, кислорода, гидроксильные группы и катионы металлов (А1, Ре, Мп и др.) составляют кристалличёскую решетку. Ее строением обусловлены важнейшие свойства бентонитовой глины как загустителя — на-бухаемость, катионообменная способность, дисперсность и т. п. Процесс гидрофобизации бентонитовых глин заключается в обмене катионов поверхностного слоч на органические аминные радикалы. Наиболее эффективными модификаторами являются производные четвертичных аммониевых оснований, в частности хлорид диметилбензилалкиламмония. Производство бентонитовых смазок, подобно силикагелевым, основано на интенсивном механическом диспергировании загустителя в масле. [c.378]


Смотреть страницы где упоминается термин кислород свойства, строение: [c.12]    [c.328]    [c.185]    [c.346]    [c.12]    [c.56]    [c.45]    [c.101]    [c.8]    [c.446]    [c.207]    [c.301]   
Методы элементоорганической химии Кн 2 (1975) -- [ c.63 , c.76 , c.307 ]




ПОИСК





Смотрите так же термины и статьи:

Кислород свойства



© 2025 chem21.info Реклама на сайте