Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Осмий устойчивость

    Строение электронных уровней атомов благородных металлов характеризуется почти полной или даже полной застройкой /-подуровня предпоследнего уровня. Способность к укомплектованию -подуровня 10 электронами особенно проявляется у атома палладия за счет перехода двух электро1[ов с подуровня 5д (см. табл. 1.1 Приложения). У элементов с четными атомными номерами известно много устойчивых изотопов у рутения и осмия по семь, у палладия и платины по шесть, а у элементов с нечетными атомными номерами — немного у родия и золота по одному, у серебра и иридия по два. Кроме устойчивых у этих элементов известно много радиоактивных изотопов. [c.324]


    Оксиды платиновых -металлов можно получить непосредственным соединением с кислородом, но для большинства этих металлов они неустойчивы. Устойчивые оксиды дают аналоги железа — рутений и осмий в степенях окисления +4 и - -8. Некоторые свойства их оксидов приведены в табл. 12.40. [c.380]

    Общая характеристика платиноидов. Структуры валентных электронных оболочек платиновых элементов отличаются значительным разнообразием вследствие возможности проскока и5-электронов на (п—1) -орбиталь. В силу малого различия энергий соответствующих орбиталей относительные устойчивости разных электронных конфигураций сравнимы. Легкость взаимных переходов электронов между различными уровнями обеспечивает разнообразие валентных состояний и степеней окисления. Поэтому нередко проскоки -электронов не связаны с достижением стабильной ( -конфигурации, что характерно для элементов подгруппы меди. Нормальное заполнение валентных орбиталей (без проскоков электрона) характерно лишь для осмия и иридия, электронные конфигурации которых аналогичны таковым для железа и кобальта. Палладий — единственный элемент в периодической системе, который в нормальном состоянии не имеет электронов на з-оболочке. У платины стабильна -конфигурация, что также не наблюдается у других элементов периодической системы. Некоторые характеристики элементов и простых веществ семейства платиноидов приведены ниже. [c.416]

    У элементов с нечетными порядковыми номерами известны устойчивые изотопы у родия—один, а у иридия — два Чг (36,5%) и 1г (61,5%). У элементов с четными порядковыми номерами число устойчивых изотопов велико у рутения и осмия по семь, у палладия и [c.140]

    При этом необходимо учитывать, что любые виды и формы очистки объектов окружающей среды могут повлечь за собой, как и в случае утилизации ОСМ и отходов их переработки, возникновение новых экологических проблем. Кроме того, даже полностью очистив ландшафт от загрязнений, мы никогда не сможем вернуться к прежней экосистеме во всем ее многообразии и сложности это всегда будет система более простая, а следовательно, менее устойчивая как по отношению к воздействию естественных экологических факторов (климат и т.п.), так и ко все возрастающей техногенной нафузке. Везде будет иметь место процесс упрощения, т.е. стирания информации и нарастания хаоса [85, 89]. [c.377]

    В виде компактных металлов рутений и в меньшей степени осмий устойчивы по отношению с кислотам и их смесям, но разрушаются Б растворах гипохлоритов и при сплавлении со щелочами в присутствии окислителей, т. е. в условиях, способствующих образованию оксоанионов с высокими степенями окисления -элемента  [c.583]

    В виде компактных металлов рутений и в меньшей степени осмий устойчивы по отношению к кислотам и их смесям, но разрушаются в растворах гипохлоритов и при сплавлении со щелочами в присутствии окислителей [c.595]

    Из производных рутения (И) и осмия (II) наиболее устойчивы [c.588]

    Благодаря высокой твердости и высокой коррозионной устойчивости осмий п его сплавы с рутением (и иридием) применяются для изготовления ответственных деталей точных измерительных приборов, а также наконечников перьев авторучек. Осмий и рутений — высокоэффективные катализаторы процессов гидрогенизации. Особо высокоэффективен осмий как катализатор синтеза аммиака, а рутений — синтеза углеводородов с длинными цепями. [c.620]

    Окислительные свойства оксорутенатов (VI) (оранжевого цвета) выражены менее отчетливо, но все же они окисляют концентрированную соляную кислоту. В соответствии с устойчивой степенью окисления осмия гидроксодиоксоос-маты (VI) (розового цвета), наоборот, довольно легко окисляются до OSO4  [c.592]


    По сравнению с элементами подгруппы железа у кобальта и его аналогов происходит дальнейшее спаривание п—1) -электронов и стабилизация п—1) -подслоя. Поэтому высшая степень окисления кобальта и его аналогов оказывается ниже, чем у рутения и осмия. Для кобальта наиболее типичны степени окисления +2 и 4-3, а для иридия степени окисления 4-3 и +4 примерно равноценны. Получены также соединения родия (VI) и иридия (VI). Для элементов подгруппы устойчивы координационные числа 6 и 4 (табл. 61). [c.632]

    Платиновые металлы чрезвычайно устойчивы по отношению к химическим реагентам. Рутений, родий и иридий (компактные) не растворяются даже в царской водке. Последняя растворяет платину и осмий, а палладий растворяется также в НЫОз. [c.332]

    Иридий используется в сплавах с платиной. Примесь иридия к платине сильно увеличивает ее твердость и химическую устойчивость. Из подобного эталонного сплава (90% Р1 и 10% 1г) сделан хранящийся в Париже эталон метра. Сплавы иридия с осмием отличаются исключительной твердостью и идут для выделки осей наиболее точных часовых механизмов и наконечников перьев для авторучек. [c.371]

    Из металлов только золото, платина, осмий, иридий, ниобий, тантал и вольфрам, устойчивы к действию азотной кислоты. Некоторые металлы (например, Ге, А1, Сг) пассивируются концентрированной азотной кислотой. Окислительными свойствами обладают и водные растворы азотной кислоты. [c.407]

    Оксиды рутения и осмия в высшей степени окисления не могут химически взаимодействовать с водой с образованием устойчивых гидратных форм. [c.87]

    Для карбонилов прослеживается аналогия в соответствующих вертикальных триадах. Так, рутений и осмий, подобно железу, образуют пентакарбонилы Э(СО)5, представляющие собой летучие жидкости. Эти карбонилы легко образуют трехъядерные кластеры Эз(СО)12, которые термически более устойчивы. Среди карбонилов рутения известны и более сложные кластеры Ки4(СО)12, Кив(С0)18. Это твердые малорастворимые в воде, но легкорастворимые в неполярных органических растворителях вещества. В карбонильных соединениях родия и иридия имеется определенное сходство с кобальтом. Для них характерны кластерные карбонилы Эг(С0)8 — легкоплавкие кристаллические вещества, склонные к сублимации. С другой стороны, эти элементы, как и элементы первой диады платиноидов, образуют полиядерные твердые карбонилы Э4(СО)12 и Эа(С0)1в. Кроме того, для иридия известен полимер [1г(С0з)1 , чрезвычайно устойчивый по отношению к щелочам и кислотам. Для платины и палладия в отличие от никеля карбонильные производные малохарактерны, хотя и существуют. [c.424]

    По химическим свойствам марганец и рений существенно огли-чаются друг от друга. Марганец является довольно сильным восстановителем, репий же более сходен со своими соседями по периоду — вольфрамом и осмием, чем с марганцем. Для рения характерна пассивность при низких температурах и устойчивость соединений, в которых он проявляет высшую степень окисления +7 [c.290]

    Наи.менее устойчивы к кислороду рутений и осмий. При обычной температуре в компактном виде онп покрываются оксидными пленками и в дальнейшем пе окисляются, а в порошке окисляются. При температурах выше 600°С рутени11 и осмии сгорают в кислороде с образоваппем тетраоксидов. Родий, иридий и налладип с кислородом начинают заметно реагировать лишь [ ри 600°С при этом они покрываются оксн/июй пленкой. В расплавленных палладии и серебре кислород заметно растворяется. Наиболее устойчивы к кислороду платина и золото. [c.325]

    Высшие окислы рутения и осмия различаются между собой по своей устойчивости. Так, 0з04 кипит без разложения и лишь мед- [c.555]

    Получены солеобразные соединения рутения и осмия типа М2ЭО4, в которых Э проявляет валентность +6. Подобные соединения неустойчивы. Однако их химическое поведение весьма различно. Так, производные шестивалентного рутения легко восстанавливаются до НиОг, причем валентность элемента изменяется от +6 до +4. НиОа—наиболее устойчивый окисел рутения. Производные же шестивалентного осмия, напротив, легко окисляются до 0з04— при изменении валентности элемента от +6 до +8. [c.556]

    По отношению к воде характеристические оксиды ведут себя различным образом и по этому признаку их можно подразделить на четыре группы довольно редки оксиды, растворяющиеся в воде без заметного химического взаимодействия (высшие оксиды рутения и осмия) большинство оксидов химически не взаимодействует с водой и не растворяется в ней — соответствующие гидроксиды получаются лишь косвенным путем (в частности, амфотерные оксиды AlsO ,, СггОз, РегОз, ZnO и т. п.) две взаимодействующие с водой группы оксидов, из которых одни при взаимодействии образуют растворимые в воде гидроксиды основного или кислотного характера (оксиды бора, углерода, азота, фосфора, серы, щелочных и щелочно-земельных металлов), а вторые — нерастворимые в воде гидроксиды (оксиды бериллия, магния, редкоземельных элементов) основного характера. Учитывая, что сама вода является идеальным амфолитом, индифферентность оксидов по отношению к ней вовсе не связана с их индифферентностью по отношению к кислотам и щелочам. Все кислотные оксиды, независимо от их отношения к воде, реагируют со щелочами, а все основные — с кислотами. Так, нерастворимые в воде СиО и SiOa хорошо взаимодействуют с кислотами и щелочами соответственно. В то же время амфотерные оксиды, как правило, устойчивы не только по отношению к воде, но и к кислотам и щелочам. Типичным примером такого рода оксидов является AI2O3, совершенно не взаимодействующий с кислотами, а со щелочами реагирующий лишь в жестких условиях — при сплавлении. [c.63]

    Осмий повторяет свойства рутения, но обладает большей активностью. Порошок осмия окисляется при комнатной температуре, образуя устойчивый тетраоксид 0з04, а компактный осмий горит при 600— [c.143]

    Таким образом, можно заметить, что устойчивость кислородных соединений снижается в ряду Os—Ir—Pt. С другой стороны, сродство к кислороду снижается от Pd к Pt, от родия к иридию. Исключением являются рутений и осмий. У последнего сродство к кислороду увеличивается и для него характерен высший оксид OSO4. Устойчивость высшего оксида и его большая летучесть роднят осмий с соседями слева по периодической системе — Re и W. [c.146]

    Химические свойства соединений элементов VIII группы периодической системы в целом изменяются при переходе от легких к тяжелым аналогам, подчиняясь тем же закономерностям, что и свойства соединений переходных элементов других групп. Так, при перемещении по группе сверху вниз возрастает устойчивость соединений, содержащих элемент в высшей степени окисления (см. табл. 1.15). Действи-лельно, если даже для железа наиболее характерной степенью окисления является +2 и +3 ( шести - и особенно восьмивалентное железо неустойчиво), то для осмия вполне стабильны соединения с наиболее высокой для элементов периодической системы степенью окисления -Ь8. Такая же закономерность наблюдается при переходе от Со и Ni к их тяжелым аналогам. Например, для Ni наиболее устойчивы соеди- [c.111]

    Химические свойства. Железо является металлом со средней восстановительной активностью. При окислении его слабыми окислителями получаются производные двухвалентного железа сильные окислители переводят его в трехвалентное состояние. Эти два валентных состояния являются наиболее устойчивыми, хотя известны соединения железа с валентностью 1, 4 и 6. Являясь аналогом рутения и осмия (аналогия по подгруппе), железо имеет также много сходного с кобальтом и никелем (аналогия по периоду). При определенных условиях оно вступает в реакции почти со всеми неметаллами. При невысоких температурах (до 200° С) железо в атмосфере сухого воздуха покрывается тончайшей оксидной пленкой, предохраняющей металл от дальнейшего окисления. При высокой температуре оно сгорает в атмосфере кислорода с образованием Fe Oi. Во влажном воздухе и кислороде окисление идет с получением ржавчины 2Fe20a HgO. Галогены активно окисляют железо с образованием галидов FeHlgj или FeHlgg (иодид железа (III) не образуется). При нагревании железо соединяется с серой и селеном, образуя сульфиды и селениды. В реакциях с азотом и фосфором получаются нитриды и фосфиды в случае малых концентраций азота образуются твердые растворы внедрения. Нагревание с достаточным количеством [c.348]


    Из металлов только золото, платина, осмий, иридий, ниобий, тантал и вольфрам устойчивы к действию азотной кислоты. Некоторые металлы (например. Ре, А1, Сг) пассивируются концентрированной азотной кислотой. Окислительными свойствами обладают и водные растворы азотной кислоты. Обычно процесс восстановления HNOз протекает в нескольких параллельных направлениях и в результате получается смесь различных продуктов восстановления. Природа этих продуктов, их относительное содержание в смеси зависят от силы восстановителя, концентрации азотной кислоты и температуры. Рис. 48 иллюстрирует относительное содержание продуктов восстановления азотной кислоты железом в зависимости от ее концентрации. [c.263]

    Фторидные комплексы такого типа неизвестны. Близко к галоге-нидным комплексам примыкают цианидные, которые особенно устойчивы для платины (для [Р1(СК)4]"- рЛ нсст 41). Для рутения и осмия в цианидных комплексах характерно к. ч. 6 К4ГЭ(СМ)в]. Известны и соответствующие кислоты Н4[Э(СК)в], представляющие собой бесцветные кристаллические вещества. Для платиноидов в степени окисления +2 известны роданидные (На[Р1 (СК5)4], Р- нест 28), оксалатные [3(0204)2] и комплексы с более сложными органическими лигандами. [c.424]

    Даже наиболее активные металлоиды при обычных температурах на компактные платиновые металлы не действуют. Более или менее энергичное взаимодействие может быть вызвано нагреванием, причем наблюдаются интересные индивидуальные особенности отдельных элементов по отношению к кислороду устойчивее других металлов родий и платина, по отношению к сере — рутений, по отношению к хлору — иридий. Наименее устойчив по отношению к кислороду, осмий, тонкий порошок которого медленно окисляется на воздухе (до 0з04) даже при обычных условиях. Меньшая химическая устойчивость в очень мелко раздробленном состоянии (в виде черни ) по сравнению с компактным характерна и для других платиновых металлов. [c.450]

    Фторидные комплексы такого типа неизвестны. Близко к галогенидным комплексам примыкают цианидные, которые особенно устойчивы для платины (для [Р1(СК)4]2 р/1 (,ст 41). Для рутения и осмия в цианидных комплексах хар актерно к.ч. 6 К4[Э(СК)( ]. Известны и соответствующие кислоты Н4[Э(СК)( ], представляющие собой бесцветные кристал.яические вещества. Для платиноидов в степени окисления 4-2 известны роданидные (H2[Pt( NS)4], рА нест 28), оксалатные [Э(С204)2]2 комплексы. [c.500]


Смотреть страницы где упоминается термин Осмий устойчивость: [c.264]    [c.491]    [c.328]    [c.431]    [c.183]    [c.477]    [c.332]    [c.216]    [c.379]    [c.381]    [c.452]    [c.452]    [c.498]    [c.393]   
Методы элементоорганической химии Кн 2 (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Осмий

Осмий осмий



© 2025 chem21.info Реклама на сайте