Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

эффект дипольный момент

    Ко второй группе относятся полярные растворители с высоким дипольным моментом. Взаимодействие полярных растворителей с растворяемым веществом носит смешанный характер и складывается из дисперсионного эффекта и ориентационного, причем последний часто является преобладающим. Полярными растворителями, широко применяемыми при очистке масел, являются фенол, фурфурол, крезолы, Ы-метилпирролидон, ацетон, метилэтилкетон и некогорые другие. [c.217]

    Дипольный момент уменьшается, если два эффекта индукционный (большая стрелка) и сопряжения (маленькая стрелка) действуют в противоположных направлениях. Наоборот, при одинаковом направлении обоих эффектов дипольные моменты увеличиваются  [c.320]


    В арилгалогенидах наличие -/-эффекта приводит к возникновению дефицита электронной плотности бензольного кольца, что сказывается в понижении их реакционной способности в реакциях электрофильного замещения по сравнению с бензолом. Под влиянием —/-эффекта в большей степени обедненными электронной плотностью должны оказаться орто- и пара-положен я и электрофильные реагенты должны атаковать мета-положения, где дефицит электронной плотности меньше. Однако кроме сильного —/-эффекта атомы галогенов обладают также +М-эффектом, обусловленным наличием неподеленных пар р-электронов. Этот эффект сравнительно невелик, но он обнаруживается в галогенбензолах даже в стационарном состоянии молекулы. Это подтверждается уменьшением дипольных моментов галогенбензолов по сравнению с соответствующими алкилгалогенидами  [c.338]

    Индукционное взаимодействие (эффект Дебая). Молекула, обладая постоянным дипольным моментом, наводит в другой молекуле, неполярной или полярной, так называемый индуцированный дипольный момент  [c.133]

    Дипольный момент этанола равен 1,65 0, а фенола—1,40 О. Каково направление векторов дипольных моментов в этих соединениях Какими электронными эффектами они обусловлены  [c.164]

    Электростатическое взаимодействие жестких диполей, ориентирующихся друг к другу противоположными зарядами (ориентационный эффект). Проявляется оно прежде всего у молекул с большим дипольным моментом (полярные молекулы), имеющих несимметричное строение. [c.11]

    В случае ароматических соединений нередко изменение реакционной способности орто-заместителями можно объяснить тем, что находящиеся нормально в плоскости бензольного кольца группы выталкиваются из него. Если при этом речь идет о группе, связующие электроны которой находятся во взаимодействии с бензольным ядром в духе мезомерии, то подобное вытеснение группы из плоскости кольца делает невозможной мезомерию или по крайней мере ослабляет ее. Понятно, что в результате этого происходит изменение реакционной способности, так как в результате подобного стерического эффекта дипольные моменты полярных групп изменяются в немалой степени (стр. 391). Происходит ли это изменение в сторону понижения или повышения скорости реакции, на основании общих соображений предсказать нельзя. Такое предсказание требует знания каждого конкретного случая (ср. ссылки [126—130] к гл. 17). [c.492]

    Наличие у поверхностно-активных ингибиторов коррозии различных активных групп вызывает статические и динамические эффекты, определяющие дипольный момент, полярность и поляризуемость молекул в целом, их магнитные свойства [307]. [c.298]

    Взаимодействие между неполярными молекулами (дисперсионный эффект). Дисперсионные силы возникают в результате смеш,ения электронных оболочек в момент сближения молекул, что приводит к кратковременной и многократной их поляризации. При определенной ориентации и наличии кратковременной поляризации молекулы способны притягиваться друг к другу. Это наиболее распространенный и универсальный вид сил межмолекулярного взаимодействия, К неполярным растворителям относятся пропан, бензол и все другие углеводородные растворители. Толуол также следует отнести к группе неполярных растворителей, так как имеющийся у него небольшой дипольный момент решающей роли не играет. В масляном сырье все углеводороды являются неполярными, за исключением некоторой части ароматических, обладающих слабо выраженной полярностью. [c.70]

    На рис. 7.6, б показано распределение значений дипольного момента молекул воды в цилиндрических порах. Дипольные моменты ориентируются преимущественно параллельно оси цилиндра, так как в отличие от плоских пленок эта ось является дополнительным выделенным направлением. Этот эффект приводит к электростатическому отталкиванию между образовавшимися каплями, что усиливает тенденцию к пространственному разделению системы. [c.126]


    Третьим источником сил Ван-дер-Ваальса может быть взаимное притяжение колеблющихся электронов квантово-механического характера (дисперсионный эффект). Оно может появляться у молекул, построенных симметрично и лишенных дипольного момента. [c.11]

    Для многих молекул о симметрии равновесной конфигурации (но не о расстояниях) удается судить уже по самому существованию или отсутствию спектра. Так, ИК-вращательный спектр аммиака указывает на пирамидальное строение молекулы, поскольку плоская молекула ХУз не имеет дипольного момента и неактивна в ИК-спектре. Аналогично существование вращательного ИК-спектра молекулы НгО указывает на нелинейность молекулы, так как линейные симметричные молекулы неполярны. Так как ИК- и МВ-вращательные спектры связаны с наличием дипольного момента, то, изучая эффект Штарка в МВС, можно определить дипольный момент люлекулы. [c.170]

    Наряду с отмеченными эффектами при контакте полярного растворителя с ионитом наблюдается сольватация ионов, обусловленная электростатическим взаимодействием заряженных ионов с ди-польными молекулами растворителя. Чем меньше дипольный момент растворителя, тем меньше склонность ионита к сольватации. С уменьшением диэлектрической постоянной растворителя увеличивается электростатическое взаимодействие между противоположно заряженными ионами, что способствует образованию ионных пар и ассоциации, а также уменьшению осмотической активности ионов и разности осмотических давлений. Все эти факторы уменьшают степень набухания, но при этом силы отталкивания между фиксированными ионами возрастают до тех пор, пока не будут нейтрализованы в результате ассоциации с противоиона-ми [1]. [c.374]

    Для электрической ориентации частиц имеется гораздо больше возможностей. Исследования показывают (Толстой, 1955 г.), что анизометрические коллоидные частицы в водных растворах обычно обладают электрическими дипольными моментами, достаточными для того, чтобы за время достижения стационарной ориентации частиц в электрическом поле не произошло заметного разогревания раствора за счет прохождения через него тока (при надлежащей очистке раствора от электролита). Коллоидные частицы и макромолекулы могут иметь как собственный дипольный момент, определяемый их строением, так и дипольный момент, индуцированный электрическим полем. Если использовать постоянное электрическое поле (или постоянные импульсы напряжения), то ориентация частиц будет обусловлена взаимодействием с полем обоих видов диполей, и вклад от каждого из них в общий эффект выделить нелегко. Автор с сотрудниками (1959 г.) добились ориентации коллоидных частиц (галлуазита, бензопурпурина и многих других веществ в воде) с помощью высокочастотного электрического поля при частоте порядка десятков и сотен килогерц. При этом было пока зано, что влияние собственного дипольного момента, который жестко связан с частицей и заставляет ее колебаться в переменном поле, полностью подавлено из-за инерционности частицы. В этом случае она ориентируется только за счет взаимодействия с полем индуцированного момента, который, меняя направление синхронно с полем, создает постоянный момент силы. Величина этого момента в водных растворах достаточна для ориентации частиц. По-видимому, он возникает за счет поверхностного слоя воды. Если эта гипотеза подтвердится, то данный метод электрической ориентации частиц окажется универсальным для водных растворов. Применение высокочастотных электрических полей помогает значительно ослабить или устранить такие мешающие явления, как электролиз, поляризация и электрофорез, что делает метод особенно перспективным. Если же исследования этим методом дополнить параллельными исследованиями при ориентации в постоянном электрическом поле, то можно оценить величину постоянного диполь-ного момента частиц и найти угол между постоянным и индуцированным дипольными моментами. Например, при изучении частиц, галлуазита выяснилось, что индуцированный момент ориентиро  [c.33]

    Электростатическая составляющая обусловлена возникновением доннановского потенциала, т. е. электрическими характеристиками раствора и ионита (заряды ионов, диэлектрическая проницаемость, дипольный момент растворителя), концентрацией раствора, степенью превращения (емкостью) ионита, сродством ионита и раствора и температурой. Подчеркнем, что среди прочих факторов температура также оказывает влияние на эффекты, вызывающие набухание, поэтому важно рассмотреть и учесть при моделировании тепловые процессы, возникающие при отмывке ионита. [c.375]

    В отсутствие поля каждый вращательный уровень вырожден 2У -f 1 раз. Во внешнем однородном электрическом поле вырождение частично снимается и вращательный уровень расщепляется на 7 + 1 подуровней (эффект Штарка). В результате число линий в спектре резко увеличивается. Смещение частот новых линий относительно частоты вращательного перехода в отсутствие поля для линейной молекулы Дч =ц Я/2йД. Как видно, величина смещения пропорциональна квадрату напряженности поля F. Измерив штарковское смещение Д v, можно рассчитать дипольный момент молекулы. [c.155]

    Силы взаимодействия между полярными молекулами (ориентационный эффект). К полярным относятся вещества, молекулы которых имеют дипольный момент. У таких молекул на одном конце преобладает положительный заряд, на другом — отрицательный, в результате чего молекулы притягиваются друг к другу как разноименно заряженные тела. Полярными растворителями являются соединения, в молекуле которых содержатся электроотрицательные атомы кислорода, хлора, серы и др. (например, ке-тоны, хлорпроизводные и т. д.). Важная особенность ориентационного взаимодействия — зависимость его от температуры. Тепловое [c.69]

    Ориентационное взаимодействие возникает между молекулами, обладающими постоянным дипольным моментом. Согласно теории взаимодействия полярных молекул, разработанной Дебаем, Б. В. Ильиным и другими исследователями, при сближении полярных молекул будет проявляться электростатическое взаимодействие между ними, называемое ориентационным эффектом. [c.75]

    Растворители первой группы являются неполярными соединениями (различные жидкие углеводороды, четыреххлористый углерод и др.) или соединениями, обладающими относительно небольшим дипольным моментом (хлороформ, этиловый эфир и др.). Они смешиваются с углеводородами фракций нефти в любых соотношениях. Общим для растворителей этой группы является то, что притяжение между молекулами растворителя и растворяемых фракций нефти, необходимое для получения раствора, создается в результате дисперсионного эффекта Лондона. Углеводороды нефти с высокой температурой плавления имеют ограниченную растворимость в упомянутых выше растворителях. Согласно исследованиям А. Н. Саханова и Н. Васильева 12] растворимость указанных углеводородов (парафинов и церезинов) в нефтяных [c.159]

    Напишите структурные формулы соединений Аг—X, отметьте направления дипольных моментов и объясните, какие виды электронных эффектов (I, М) проявляются в каждом случае. [c.171]

    Поляризация одной двухэлектронной связи в сложной молекуле влияет на состояние соседних связей. Дипольный момент индуцирует Б них также дипольные моменты, правда, значительно меньшие. Этот индуктивный эффект (/-эффект) оказывает влияние на реакционную способность молекулы и особенно наглядно проявляется при сравнении констант диссоциации замещенных кислот. Так, константы диссоциации [c.52]


    О наличии +М-эффекта в молекуле винилхлорида можно сделать вывод, сравнив значения дипольного момента ц винилхлорида (1,44 Д) и этилхлорида (2,00 Д). Как известно, ц = = 21, где 2 — заряд, а I — расстояние между разноименными за- [c.13]

    Отрицательный индуктивный эффект этих групп связан с большей электроотрицательностью атомов кислорода и азота по сравнению с атомом углерода. Алифатические соединения, содержащие такие группы, полярны. Дипольные моменты некоторых из них приведены ниже (в Д)  [c.334]

    Заместители второй группы. 1. Заместители, у которых—/-эффект больше, чем -ьЛ4-э ф ф е к т. По сравнению с группами ОН и ЫНг галогены обладают большим —/-эффектом. Это видно из сравнения дипольных моментов, [c.337]

    Второй эффект, обусловливающий возрастание емкости конденсатора, проявляется для полярных молекул, т. е. молекул, обладающих постоянным дипольным моментом [г. Электрическое поле стремится ориентировать молекулы соответствующими концами диполя в направлении положительной и отрицательной обкладок конденсатора. Этот эффект называют ориентационной поляризацией Р . Она тем значительнее, чем больше р,. Ориентационная поляризация зависит от температуры, так как нагревание, усиливая тепловое движение молекул, препятствует их ориентации. [c.189]

    Объясните (с учетом электронных эффектов), почему дипольные моменты у Аг—На имеют меньшие значения, чем у R—Hal, а у ароматических нитросоединений они больше, чем у алифатических нитросоединений. [c.150]

    Уравнения (4.66) — (4.68) для энергии взаимодействия справедливы и в классической и в квантовой механике. Различие состоит лишь в расчете моментов (г и 0, причем эти моменты могут быть вычислены только квантовомеханическими методами, тогда как с помощью классической механики этого сделать нельзя. Другими словами, плотность заряда р должна быть найдена с помощью квантовомеханических расчетов. Практически такие расчеты трудно выполнить с желаемой точностью, поэтому предпочтение отдается экспериментальному определению моментов. Дипольный момент можно определить по диэлектрическим свойствам или, например, по эффекту Штарка в микроволновом спектре. Молекулярным дипольным моментам посвящена обширная литература компактный обзор по этому вопросу приведен в работе Уэтерли и Уильямса [57]. Определить экспериментально квадрупольный момент гораздо сложнее. Для этого используются такие обусловленные давлением эффекты, как уширение микроволнового спектра и поглощение в инфракрасной части спектра. Обзор всех этих методов приводится в работе Букингема [55]. Около половины известных в настоящее время [c.196]

    Из данных квадрупольного взаимодействия следует, что кристаллическая решетка AI I3 на 2/3 является ионной и на 1/3 ковалентной. Мономерный AI I3 проявляет сильный поляризующий эффект — дипольный момент равен 5,3 Д что объясняет его каталитическое действие в результате влияния на межатомные силы в молекуле, с которой он образует комплексы. [c.20]

    X (X = О, S). Предположим, что она не меньше дипольно. го момента связи С рЗ С р2, который составляет 0,67—0,69 D [511]. Тогда, если не учитывать других эффектов, дипольные моменты- виниловых эфиров и сульфидов независимо от их конформационного строения должны быть меньше дипольных моментов их предельных аналогов на 0,21—0,39 D (для интервала углов S — С рЗ 90—120°). Такой подход мог бы объяснить, иапример, низкое значение дипольного момента метилвинилсульфида без привлечения концепции р — я-сопряжения. Но дйя того, чтобы ответить на вопрос, почему полярность виниловых сульфидов монотонно возрастает с увеличением разветвленности радикала R или почему трет-алкилвинилсульфиды более полярны, чем соответствующие предельные сульфиды, придется привлечь дополнительное допущение, что в плоской г мс-конформации п-индуцированный момент близок к нулю, а в ош-конформации его вклад в общую полярность возрастает до 0,35 D. Вообще говоря, это не калсется невероятным, поскольку в плоской конформации ст-момент располагается в узловой плоскости я-электронного облака и его возмущающее действие на я-систему действительно может оказаться минимальным, в то время как с выходом ст-момента из плоскости двойной связи (вследствие увеличения объема радикала). поляризованность я-системы должна возрастать (рис. 35 [488]). [c.196]

    В начале шестидесятых годов О. Р. Лайд, определяя дапольный момент с помощью эффекта Штарка, нашел, что его величина для изобутана равна 0,132 В /88/, а для н-пропана - 0,0830/89/. Следует отметить, что определение электрического дипольного момента по Штарк-эффекту дает возможность измерять значения дипольного момента порядка 0,1-0,21) с высокой точностью (до 0,2%). Важно, что дпя метода Штарка несущественно даже значительное загрязнение газов, так как дпя измерения выбираются лишь те линии поглощения, которые принадлежат исследуемой молекуле /90/. Стало ясно, что молекулы алканов обладают постоянным электрическим дЬпольным мо-мштом. Постоянный дипольный момент молекул алканов существует благодаря неполной взаимной компенсации дипольных моментов отдельных С-С-и С-Н-связей /87/. [c.142]

    Ориентационное взаимодействие (эффект Кьезома). Рассмотрим взаимодействие двух полярных молекул с одинаковыми дипольными моментами. При сближении они ориентируются так, чтобы энергия системы стала минимальной. На рис. 61, а показано расположение диполей в хвост . Пусть расстояние между центрами диполей з намного больше длины диполя I. Заряд полюса диполя обозначим через е. Энергию ориентационного взаимодействия можно представить как сумму кулоновского притяжения и отталкивания зарядов полюсов диполей  [c.132]

    Взаимодействие индудированных диполей в неполярных молекулах, возникающих под влияние5Г"силового поля молекул с большим значением дипольного момента (эффект Дебая)  [c.157]

    Дисперсионное взаимодействие практически определяет собой взаимное притяжение молекул в неполярных веществах. Исходя из изложенного, следует считать, что при взаимной ориентации молекул, обладающих жестким и индуцированным дипольным моментом, связь между ними может быть значительно упрочена за счет влияния сил дисперсии, обнаруживающих свое действие при взаимном приближении молекул. При тесном сближении молекул могут действовать и силы взаимного отталкивания элeJ po-нов. Они могут преобладать при малых расстояниях между молекулами. Общий эффект сил притяжения является итогом влияния температуры и расстояния между молекулами. Роль этих влияний подытожена в табл. 61 (1). [c.158]

    Какое из соединений будет обладать большим дипольным моментом СНз—СН2—С1, СН2 = СН—С1, СН2 = СН—СН2С1 Для ответа используйте электронные представления (индукционный и мезомерный эффекты). [c.42]

    В главе XXI (Электрические и магнитные свойства углеводородов, автор В. В. Михайлов) собраны и научно обработаны литературные данные по следующим вопросам диэлектрическая проницаемость, дипольные моменты, магнитная восприимчивость и магнитное вращение плоскости поляризации ( эффект Фарадея ), Перечисленные свойства имеют значение для практики (изолирующие свойства диэлектриков), для исследования строения углеводородов и некоторых свойств жидкостей (дипольные моменты), для анализа смесей углеводородов (магнитное вращение плоскости иоляризацрш) и т. д [c.5]

    В настоящей главе рассматриваются диэлектрическая проницаемость, дипольный момент, магнитная восприимчивость и магнитное вращение плоскости поляризации (эффект Фарадея) углеводородов. Эти свойства имеют большое значение и сами по себе как характеристика индивидуального углеводорода, но наряду с этим определение некоторых из перечисленных выше свойств может быть использовано и для установлеиия состава углеводородных смесей. [c.396]

    В иоследнес время для определения дипольных моментов используется изучение Штарк-эффекта в чистом вращательном спектре путем применения микроволновой сиектросконии. Таким способом мон но определить величину дипольного момента весьма точно см. статьи Горди [103] и Уиф-фена [270], а также кннгу Горди с сотрудниками [7]. [c.413]

    Индукционный эффект возникает за счет наведения молекулой, обладающей постоянным дипольным моментом, дипольного момента в другой полярной или непо лярной молекуле. Величина такого индуцированного дипольного момента зависит от [c.94]

    Кроме рассмотренного дисперсионного взаимодействия между двумя молекулами существует также простое дипольное взaи ю-действие (Кеезом, 1915—1921 гг.) или взаимодействие индуцированных диполей (Дебай, 1920—1921 гг.), если хотя бы одна из молекул обладает постоянным дипольным моментом. И в этом случае энергия обратно пропорциональна шестой степени расстояния между молекулами, но, по-видимому, два последних взаимодействия играют очень малую роль в полном взаимодействии между конденсированными фазами, определяющем А я, так как они неаддитивны, вследствие чего их суммарный эффект сильно снижается. Поэтому при расчете A J, даже в случае сильнополярных молекул (Н2О, МНз) компонентами Кеезома и Дебая, которые превосходят лон-доновскую компоненту в энергии взаимодействия отдельных молекул, в настоящее время пренебрегают [2]. [c.171]

    Изотропные вещества в однородном электрическом поле большой напряженности обладают способностью к двулучепреломлению монохроматического линейно поляризованного луча света, распространяющегося перпендикулярно приложенному полю. Это явление было открыто в 1875 г. Керром в экспериментах со стеклом (прозрачное изотропное вещество), а также с жидкостями. Лишь в 1930 г. наблюдали эффект Керра в газах и парах. Таким образом, эффект Керра представляет электрооптическое явление, которое состоит в том, что изотропное вещество, помещенное в электрическое поле, приобретает свойство оптически одноосного кристалла с оптической осью, направленной вдоль приложенного поля, т. е. внешнее электрическое поле вызывает искусственную анизотропию вещества. Такое воздействие поля обусловлено тем, что анизотропные молекулы изотропного вещества под влиянием поля преимущественно ориентируются вдоль поля (рис. XIII.1). Наличие постоянного электрического дипольного момента молекул усиливает этот эффект. [c.234]

    Наличие у галогенов +М-эффекта, противоположного по знаку их индуктивному эффекту, подтверждается и уменьшением дипольных моментов винилгалогенидов по сравнению с ал-килгалогенидами  [c.117]

    Арилгалогениды и особенно винилгалогениды реагируют с магнием значительно труднее алкилгалогенидов. Это можно также объяснить увеличением прочности связи С—X вследствие наличия -fЛi-эффeктa у галогена и —/-эффекта у винила и арила. Например, энергия связи С—I в вннилиодиде (278 кДж/моль) больше, чем в этилиодиде, на 88 кДж/моль, а дипольные моменты винилгалогенидов меньше, чем у соответствующих алкилгалогенидов (для иодидов соответственно 1,26 и 1,93 Д). [c.258]

    Рефракцию (Яо) определяют как описано в гл. XXVII или рассчитывают по таблицам атомных рефракций. При таком способе точность определения дипольных моментов относительно невысока, йоокольку при этом не учитывается эффект поляризации раствО рймлй и атомная поляризация. [c.328]


Смотреть страницы где упоминается термин эффект дипольный момент: [c.88]    [c.19]    [c.82]    [c.227]    [c.236]    [c.72]    [c.31]   
Методы элементоорганической химии Кн 2 (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Дипольный момент

Дипольный эффект



© 2025 chem21.info Реклама на сайте