Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константы экранирования протона

    Рассмотрим, чему равен химический сдвиг для атома водорода по сравнению с протоном. Фактически такой химический сдвиг численно равен константе экранирования протона в атоме водорода. Эта константа равна  [c.63]

    ЭМПИРИЧЕСКИЕ КОНСТАНТЫ ЭКРАНИРОВАНИЯ . Используя данные табл. 29-1, можно иногда с высокой точностью предсказать химические сдвиги некоторых протонов. Но как быть со структурами с таким расположением атомов, для которого данные табл. 29-1 оказываются неприменимыми  [c.547]

    Константа экранирования ст пропорциональна электронной плот ности на 15-орбитали атома водорода, а стВо — это величина вторичного поля, индуцированного у протона. В результате магнитного экранирования в эксперименте с разверткой поля нужно [c.30]


    Таблицы констант экранирования, вычисленных с помощью этого уравнения, не нашли широкого применения, поскольку частоты поглощения данных протонов удобнее сравнивать не с частотами поглощения изолированного протона, а с частотами поглощения протонов (или ядер 0 ТМС, химические сдвиги которых условно приваты равными нулю. Из приведенного выше уравнения следует, что резонансная частота зависит от внешнего магнитного поля, а, следовательно, на химический сдвиг 8 индукция магнитного поля спектрометра не влияет. Химический сдвиг 6 определяется следующим образом  [c.121]

    В присутствии внепшего магнитного поля Е магнитное поле, действующее на ядро, равно (1 — а) Р, где о — константа экранирования протона. Эффект экран ования обусловлен электронами, расположенными вокруг ядра. Значение а для ацетилена равно 2,90-Ю [75—77]. [c.168]

    Слияние двух потенциальных ни в одну может произойти в очень сильных водородных связях со сближенными атомами X и Y[54J. В этом случав вместо двух таутомерных форм (А) и (Б) имеет место одна промежуточ -ная форма (Б). Не исключается третий, комбинированный вариант, когда форма (В) присутствует наряду с формами (А) и (Б) (гри потенциальные ямы). Такое предположение сделано авторами работы [55] для объяснения существенной разницы констант экранирования протона и дейтрона в водородном мостике ацетилацетона и заметной температурной зависииости этих констант. [c.122]

    Реальность рассеяния заряда наиболее четко демонстрируется по химическим сдвигам в ЯМР-спектрах карбоний-ионов. Малые константы экранирования протонов, обычно наблюдаемые для карбониевых ионов, являются следствием малой электронной плотности на атомах водорода. [c.142]

    Одним из первых органических соединений, в спектре ЯМР которого обнаружено несколько отдельных пиков, был этанол (Дж. Арнольд с сотр., 1951 г.). В молекуле этанола есть три типа протонов, находящихся в различном химическом окружении три протона метильной группы, два протона метиле-иовой и один протон гидроксильной группы. Вследствие этого при плавном изменении напряженности приложенного магнитного поля Яо (и поддержании постоянной частоты генератора) протоны, находящиеся в разных местах молекулы, вводятся в резонанс один за другим, и их сигналы образуют спектр в соответствии со значениями констант экранирования этих протонов. Для этанола спектр ЯМР должен состоять из трех сигналов. Поскольку интенсивности сигналов, т. е. площади под резонансными пиками, пропорциональны числу магнитных ядер, спектр ЯМР этанола должен выглядеть, как показано на рис. 24. [c.62]

    Коэффициент 10 вводят потому, что (см. раздел 3.1) величина константы экранирования а, выраженная в единицах Яо, имеет порядок 10 (для протонов). Химический сдвиг б, полученный по уравнению (40), измеряют в миллионных долях (м. д.) от приложенного магнитного поля (или рабочей частоты спектрометра Го). Химический сдвиг, измеренный в этих единицах, не зависит от величины поля и определяется только химическим окружением данного ядра. [c.65]

    Большой диапазон химических сдвигов для ядер Р объясняют прежде всего тем, что их возбужденные уровни расположены близко к основным уровням, т. е. разность энергий между ними невелика по сравнению с разностью энергий у протонов. Следовательно, согласно уравнению (39), уменьшение значения АЕ приводит к возрастанию вклада парамагнитной составляющей в константу экранирования. Эта составляющая сильно зависит от окружения и обусловливает более широкий диапазон химических сдвигов по сравнению с протонами. Кроме того, парамагнитная составляющая заметно меняется под влиянием полярных молекул растворителя. Именно этим объясняют значительное изменение химических сдвигов ядер Р при замене растворителей, которое иногда бывает настолько большим, что его нельзя объяснить только неодинаковой диамагнитной восприимчивостью различных растворителей. [c.143]


    Здесь и пара представляют теперь локальный диамагнитный и локальный парамагнитный вклады в константу экранирования соответствующего ядра. Для протонов основной вклад дают и о. Теоретические расчеты показывают, что сильные парамагнитные эффекты возникают только для более тяжелых ядер, имеющих энергетически низколежащие доступные [c.31]

    Согласно формуле (VI, 16), константа экранирования, о зависит от волновой функции основного состояния электронов. Практически расчет о с достаточной точностью проводят только для протонов простых молекул. Для протонов бо- [c.123]

    В первом приближении причиной химического сдвига являются электроны связи С — Н, в образовании которой участвует данный атом водорода. Приложенное магнитное поле Во инду цирует такие циркуляции окружающего ядро электронного облака, что в соответствии с законом Ленца возникает магнитный момент, по направлению противоположный Во (рис. П. 2). Таким образом, локальное поле на ядре оказывается меньше приложенного. Этот эффект соответствует магнитному экранированию ядра, которое понижает Во на величину стВо, где а — константа экранирования для данного протона  [c.30]

    Коэффициент о называют константой экранирования данного протона в данной молекуле. Значения а для протонов очень невелики (порядка 10 и несколько больше для других ядер). Постоянная экранирования неодинакова для протонов, находящихся в разном окружении, и определяется прежде всего плотностью окружающего их электронного облака. [c.598]

    Вклады отдельных заместителей в химические сдвиги в спектрах протонного резонанса мы будем обозначать в тексте символом Аа (м. д.), поскольку они представляют изменения в константе экранирования. Положительный знак Да означает увеличение, а отрицательный — уменьшение экранирования. [c.35]

    Общее представление о характеристических областях поглощения наиболее важных типов протонов в органических соединениях дает рис. II. 6. Теперь в рамках подхода, сформулированного в начале разд. 1 гл. II, нам следует обсудить вклады в химический сдвиг от отдельных структурных фрагментов. Уже ранее отмечалось, что локальный парамагнитный вклад в константу экранирования для протонов пренебрежимо мал, поскольку разность энергий 15- и 25-орбиталей атома водорода велика. Поэтому мы можем ограничиться вначале рассмотрением двух следующих эффектов 1) локального диамагнитного вклада электронного облака вокруг рассматриваемого протона 2) эффекта соседних атомов и групп в молекуле о. В рамках этого приближения заместители и соседние атомы влияют На химический сдвиг двояким образом. Во-первых, они оказывают влияние на так как изменяют электронную плотность На протоне по индуктивному и мезомерному механизмам. Во-вторых, циркуляции электронов, индуцируемые внешним полем 0 в этих соседних атомах и группах, порождают магнитные [c.79]

    Резонансные частоты V, отличны от частот, которые наблюдаются в изотропной фазе, что вызвано влиянием анизотропии констант экранирования. Кроме того, Iц в матрице гамильтониана нужно заменить в диагональных элементах на / / - -а в недиагональных элементах — на /,-/ — О,-,-. В принципе скалярные взаимодействия могут определяться непосредственно из анализа, основанного на уравнении (IX. 31). Однако можно упростить задачу, если использовать данные анализа спектров в изотропной фазе. Важно отметить, что с помощью спектров ЯМР частично ориентированных молекул можно определить абсолютные знаки скалярных констант спин-спинового взаимодействия, если ввести предположение о преимущественной ориентации на основании известной молекулярной структуры. Наконец, следует подчеркнуть, что относительно простая форма оператора Гамильтона появляется только в том случае, если межмолекулярные диполь-дипольные взаимодействия могут быть исключены как следствие быстрых процессов диффузии в жидком кристалле. Заметим, что эти процессы отсутствуют в твердом теле. Кроме того, спектр самой жидкокристаллической фазы не наблюдается, или, точнее говоря, ои исчезает в шумах. Это объясняется относительно высокой степенью упорядоченности, которую обнаруживают сами жидкие кристаллы во внешнем поле Во, и большим числом протонов в этих молекулах. В результате тонкая структура спектров исчезает. [c.364]

    Так называемый квадратичный эффект поля, фигурирующий в уравнении (IV. 14) как член ВЕ , тесно связан с эффектом Ван-дер-Ваальса, который возникает при сильном пространственном взаимодействии между протоном и соседней группой (она может быть и другим протоном). В этом случае электронное облако вокруг протона деформируется. Понижение сферической симметрии электронного распределения вызывает парамагнитный вклад в константу экранирования (разд. 1 гл. II), который приводит к сдвигу сигнала в слабое поле. Дезэкранирование обмеченных протонов в соединениях 38—40 в существенной мере может быть отнесено за счет вандерваальсова эффекта. [c.104]

    Система А2Х, содержащая два эквивалентных протона А и один отличный от них протон X, может быть рассмотрена аналогичным образом. Протоны А считаются эквивалентными при равных константах экранирования и при одинаковом /-взаимодействии их с протоном X. Резонансная линия протона А расщепляется на дублет благодаря двум спиновым ориентациям [c.291]

    Электроноакцепторные группы и атомы по соседству с протоном уменьшают плотность электронного облака и константу экранирования, и поэтому резонанс наступает при меньшей напряженности поля На. К таким группам относятся N02, Р, С1, СК, ОК, СООК и др. Обратное действие оказывают электронодонорные группы. [c.599]

    Правила аддитивности. Идея о том, что протонные сдвиги определяются в основном магнитной анизотропией соседних групп, означает, что, по-видимому, можно составить таблицу констант экранирования с целью использования их для предсказания химических сдвигов протонов, соседних с двумя или тремя анизотропными группами. Это и сделано в виде табл. 3.2, где группы —СН2— [c.97]

    Среди факторов, определяющих величину константы экранирования протонов, в начале разд. 1 упоминалось и влияние растворителя. В общем можно полагать, что все эффекты, которые мы до сих пор обсуждали как внутримолекулярные, проявляются также и на межмолекулярном уровне. Например, установлено, что резонансные сигналы веществ, растворенных в ароматических растворителях, проявляются в более сильном поле, чем в растворителе алифатической природы. Этот эффект был приписан диамагнитному кольцевому току бензола и его производных. Подобное же влияние соседних молекул, связанное, однако, либо с экранированием, либо с дезэкранированием, может проявляться в результате магнитной анизотропии кратных связей или влияния электрического поля молекул с большими дипольными моментами. Эффекты растворителя становятся особенно значительными, если межмолекулярные взаимодействия в растворе приводят к образованию специфических комплексов. За счет диполь-дипольных или вандерваальсовых взаимодействий некоторые взаимные пространственные ориентации взаимодействующих молекул становятся более предпочтительными, чем другие. В результате могут наблюдаться специфические изменения резонансных частот отдельных протонов растворенного вещества. Их в свою очередь можно использовать для получения сведений о строении таких комплексов. Поэтому спектроскопия ЯМР оказалась важным методом исследования межмолекулярных взаимодействий. Изменения химических сдвигов под влиянием растворителя обычно меньше 1 м. д. Мы уже рассмотрели в гл. П1 их специальные применения и последствия для резонансных частот эталонных веществ. Для избежания осложнений, вызванных влиянием растворителя, рекомендуется использовать такие инертные растворители, как тетрахлорид углерода или циклогексан. Можно исключить, кроме того, и концентрационные эффекты, если провести измерения при нескольких концентрациях вещества и экстраполировать данные к бесконечному разбавлению. Измерения в газовой фазе, где межмолекулярные взаимодействия сводятся к минимуму, стали осуществимы и для веществ с высокой упругостью паров только после развития импульсных Методов с фурье-преобразованием. [c.109]


    Однако, если атом входит в состав молекулы, так что сферическая симметрия атома теряется, расчет становится более сложным. А. Сейка и К. Сликтер (19Е4 г.) предложили рассматривать общее экранирование как возникающее в результате сложения нескольких эффектов. Один из них — диамагнитное экранирование за счет электронов данного атома, которое можно рассчитать по формуле (38) для атомов. Однако вклад диамагнитного экранирования будет частично компенсирован вторым членом, парамагнитным, имеющим противоположный знак, хотя и обусловленым теми же самыми электронами. Этот член отражает тот факт, что молекула теряет сферическую симметрию и потому ноле, индуцируемое в направлении, противоположном Но, соответственно уменьшается. Иное положение состоит в том, что в присутствии магнитного поля будет иметь место некоторое смешение основного состояния молекулы с возбужденными электронными состояниями подходящей симметрии. В случае протонов вклад парамагнитной составляющей в константу экранирования является незначительным (им обычно пренебрегают), но при наблюдении магнитного резонанса на ядрах с низколежащими возбужденными уровнями (например, Р, и др.) парамагнитная составляющая может иметь большую величину. В 1957 году Дж. Гриффит и Л. Оргел, рассматривая химические сдвиги Со в октаэдрических комплексах Со +, получили парамагнитный вклад, который можно рассчитать по уравнению [c.64]

    ЯМР в твердых веществах зависит от взаимного расположения магнитных моментов ядер и от расстояний между ними. ЯМР жидкостей характеризуется более узкими линиями, так как молекулы находятся в интенсивном движении. Характер спектра определяется магнитными взаимодействиями ядер с электронными оболочками молекул, в которых находятся эти ядра. Магнитное ядро экранируется электронной оболочкой. Смещение резонансных частот химически неэквивалентных ядер, пропорциональное магнитному полро Н , называют химическим сдвигом, от сдвиг измеряют относительно стандартного вещества, магнитные ядра которого структурно эквивалентны. При протонном резонансе эталонными веществами служат тет-раметилсилан, циклогексан, вода. Химический сдвиг выражают в безразмерных единицах константы экранирования [c.452]

    Константы экранирования ядер С изменяются в широком интервале и чувствительны к изменениям электронного окружения. При работе с необогащенны-ми образцами спин-спиновая связь между ядрами С не роявляется, так как вероятность нахождения молекул, содержап их одновременно два или более ядер С, мала. Изменения ХС ядер углерода схожи с закономерностями изменений ХС протонов, однако они выражены гораздо сильнее. Так, например, изменение заряда на ядре углерода на один электрон приводит к смещени о резонанса этого ядра на 160 м. д. По количеству работ и информативности спектроскопии ЯМР- С в настоящее время занимает второе место после протонного резонанса. [c.80]

    Несмотря на отмеченное выше сходство между спектроскопией ЯМР Н и в спектральных параметрах этих ядер имеются существенные отличия. Протонные химические сдвигп обычно ограничиваются областью в 10 м. д., а резонансные сигналы ядер фтора занимают много больший диапазон, примерно в 500 м. д. Если включить и неорганические фториды, то этот диапазон расширяется до 1000 м.д. (рис. X. 1). Причина столь больших химических сдвигов заключается в большом парамагнитном вкладе в константу экранирования. Как уже отмечалось в разд. 1 гл. И, атомы более тяжелых элементов имеют низколежащие орбитали. Под влиянием внешнего поля Во в них возникают электронные возбуждения, что приводит к сдвигу сигнала ЯМР данного ядра в слабое поле. Напротив, диамагнитные вклады в изменения констант экранирования ядер фтора очень малы ( 1 %). В соответствии с этим эффекты соседних групп, так сильно проявляющиеся в ЯМР протонов, например [c.373]

    Химические сдвиги протонов представлены в нескольких таблицах. В них приводятся химические сдвиги протонов метильной, метиленовой и метиновой групп, непредельных и ароматических соединений и некоторых других типов протонов. Если таблицы не содержат необходимых данных для замещенных метана, можно применить константы экранирования Шулери, приведенные в специальной таблице. [c.112]

    Расчет химических сдвигов протонов изоиндола дал следующий ряд б4(7)-н > бкз) н > 6s(6)-H [134]. Данная последовательность была подтверждена экспериментально [135, 142, 159]. В последнее время делаются попытки связать данные по кольцевым токам с ароматичностью циклической молекулы [195]. Так, на основе теории конечных возмущений (FPT) в приближении связанного ( HF) и несвязанного (U HF) методов Хартри — Фока рассчитаны вклады кольцевых токов в константы экранирования [195]. Необходимые для анализа химических сдвигов электронные плотности получены для о-электронной системы с помощью метода Дель Ре, а для л-электронной системы — методом S F Р—Р—Р. Результаты расчетов свидетельствуют в пользу представлений об ограниченной степени ароматичности рассмотренных соединений. При переходе от пятичленных гетероциклов к их бензопроизводным э екты кольцевого тока увеличиваются. Причем аннели- [c.47]


Смотреть страницы где упоминается термин Константы экранирования протона: [c.85]    [c.85]    [c.129]    [c.63]    [c.219]    [c.386]    [c.387]    [c.71]    [c.548]    [c.82]    [c.83]    [c.84]    [c.92]    [c.94]    [c.101]    [c.101]    [c.207]    [c.208]    [c.225]    [c.264]    [c.99]    [c.83]   
Начала органической химии Кн 1 Издание 2 (1975) -- [ c.560 ]




ПОИСК





Смотрите так же термины и статьи:

Константа протонного

Константы протона

Экранирование



© 2025 chem21.info Реклама на сайте