Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеофильное присоединение к ненасыщенному атому углерода

    Нуклеофильное присоединение к ненасыщенному атому углерода [c.272]

    Атом кислорода в виниловом или этиниловом эфире придает соседнему ненасыщенному атому углерода положительный характер за счет своего -/-эффекта, так что этот углерод становится центром для нуклеофильной атаки. Ниже приведены некоторые простые реакции для иллюстрации того, как протекает присоединение нуклеофилов по двойной или тройной связи. [c.336]

    Альдегидная группа оказывает активирующее действие, причем, принимая во внимание, что она обладает — /, — Т эффектами, этот факт также представляется неожиданны.м. Имеется, однако, одна интересная возможность для его объяснения [160]. Теоретически вполне логично ожидать, что если в этилен вступит достаточно электроотрицательная группа, то его реакционная способность может перейти от нуклеофильной в электрофильную. В этом случае богатый электронами атом углерода будет удерживать свои электроны настолько крепко, что тенденция к обобщению их будет выражена у него лишь в слабой степени напротив того, электроноакцепторный характер бедного электронами углерода будет выражаться вполне отчетливо. Если альдегидная группа достаточно сильно притягивает электроны, чтобы изменить указанным образом характер реакционной способности ненасыщенного соединения, то начальный акт присоединения богатого электронами брома к [c.144]


    Реакции замыкания цикла включают внутримолекулярное обра->ание а-связи. В гораздо большей степени распространены про- сы, в которых нуклеофильный центр атакует злектрофильный. еди реакций этого типа можно перечислить следующие нуклео-льное замещение при насыщенном атоме углерода, нуклеофиль-е присоединение к ненасыщенному атому углерода и нуклеофнль-е присоединение — элиминирование. Гетероциклические системы жно также получить в результате внутримолекулярного ради-ibHoro процесса, электроциклического замыкания цикла с участи-сопряженной т-электронной системы или с участием карбенов литренов. Все эти процессы будут проиллюстрированы в последующих разделах. [c.81]

    НУКЛЕОФИЛЬНОЕ ПРИСОЕДИНЕНИЕ. Присоединяясь к ненасыщенному карбонилыюму соединению (енону), нуклеофил может атаковать атом углерода карбонильной группы или удаленный конец сопряженной системы. [c.41]

    Связь О—Н в спиртах довольно прочна, хотя она, полярна и кинетически лабильна. Значения энергии гомолитической диссоциации связи (D°) для i—Сгалканолов лежат в пределах 427—436 кДж-моль . Гомолитическое отщепление гидроксильного атома водорода радикалами для первичных и вторичных спиртов в растворе обычно не встречается в этих случаях, как правило, протекает предпочтительно атака по а-атому углерода. С другой стороны, депротонирование с образованием алкоксида легко осуществляется при обработке спирта сильно электроположительным металлом или сильным основанием. Реакционная способность понижается от первичных к третичным спиртам в соответствии с порядком изменения кислотности в жидкой фазе (см. табл. 4.1.4). Гетеролиз связи О—Н также следует за электрофильной атакой по гидроксильному атому кислорода, например при алкилировании и ацилировании спиртов. Вследствие высокой электроотрицательности и низкой поляризуемости кислорода спирты являются только слабыми и относительно жесткими основаниями (см. табл. 4.1.4) и лищь умеренно реакционноспособны в качестве нуклеофилов. Реакции присоединения спиртов к ненасыщенным соединениям обычно требуют участия катализатора или использования активированных субстратов. Нуклеофильность самих спиртов может быть активирована путем (а) превращения их в алкоксиды или (б) путем замещения гидроксильного атома водорода электроположительной или электронодонорной группой. Первый, более распространенный подход, находит применение, например, при нуклеофильном замещении алкилгало-генов, нуклеофильном (по Михаэлю) присоединении к активированным алкенам и при нуклеофильных реакциях присоединения-элиминирования в процессе переэтерификации. Второй, менее популярный подход, включает использование ковалентного средине- [c.60]

    За прошедшие годы появилось значительное количество исследований, в которых был расширен круг галоидорганических соединений, вступающих в реакцию Арбузова, и проведены исследования по изучению ее механизма. Однако за последние 20 лет наметилось и другое, не менее важное и интересное направление исследований в химии производных кислот трехвалентного фосфора — изучение взаимодействия с органическими электрофильными реагентами, не содержащими атомов галоидов. Эта новая, многообещающая и быстро развивающаяся область фосфорорганической химии включает разнообразные превращения производных кислот трехвалентного фосфора с широким кругом соединений как насыщенного, так и ненасыщенного рядов — спиртами, перекисями и гидроперекисями, карбоновыми кислотами и их производными, аминами, альдегидами, кетонами, сернистыми соединениями, непредельными углеводородами и др. Ввиду многообразия реагентов, вступающих в реакции с соединениями трехвалентного фосфора, естественно и механизмы их протекания неоднозначны. Наряду с нуклеофильным замещением наблюдаются процессы нуклеофильного присоединения и окисления. Многие из реакций нуклеофильного замещения и присоединения осуществляются по схемам, аналогичным или близким к предложенным для классической перегруппировки Арбузова и могут рассматриваться как ее разновидности. В первой фазе происходит атака атома фосфора на атом углерода, несущий какую-либо функциональную группу или являющийся концевым в непредельной системе, по механизму бимолекулярного нуклеофильного замещения с образованием квазифосфониевого соединения или биполярного иона. Во второй фазе в результате 5д,2-реакции аниона [c.5]


    По сравнению с соответствующими кислородными аналогами преимущества тиоловьи эфиров в нуклеофильных реакциях по карбонильному атому углерода, в реакциях присоединения по (3-атому углерода а,р-ненасыщен-ных субстратов и в реакциях конденсации по углероду в а-положении к карбонильной группе достаточно очевидны. В каждом случае тиоловые эфиры оказываются более активными, чем их кислородные аналоги. Кислород- [c.216]

    Многие из реакций нитрилов очень схожи с реакциями карбонильных соединений, особенно альдегидов и кетонов. Следующие факторы обусловливают это сходство (а) нитрильная и карбонильная группы обладают поляризованными я-связями, по которым может происходить реакция нуклеофильного присоединепия (б) обе группы оказывают дезактивирующее и лima-opиeнтиpyющee действие на ароматическое кольцо, с которым они непосредственно связаны (в) обе группы, находясь у ненасыщенного атома углерода, способствуют нуклеофильной атаке по Р-углеродному атому и, следовательно, присоединению по а,Р-связям С == С или С = С (г) обе группы активируют а-водородные атомы, которые поэтому относительно легко замещаются или удаляются в виде протонов под действием подходящего основания, причем образуется карбанион, стабилизованный за счет делокализации избыточного отрицательного заряда. Вряд ли необходимо приводить большое число примеров для иллюстрации пунктов (б) — (г) поэтому изложение в данном разделе будет несколько сжатым и весь материал разбит на два подраздела реакции нуклеофильного присоединения по связи С = N и различные реакции, включающие примеры, иллюстрирующие пункты (б) - (г). [c.484]

    Рассмотрим два ступенчатых пути перехода от формы 1а к форме 16. Если атакующий реагент является электронодонорным (нуклеофильным), то атака направляется непосредственно на углерод С, так как он представляет собой положительный конец диполя в ненасыщенной функции. Богатый электронами атом N приближается сверху (илп снизу) к атому С, лежащему в плоскости бумаги, при отом атомы А, В и В сдвих аются П1гже (или выше) плоскости бумаги, пока но образуется тетраэдрическая структура 16. Реакция завершается нрисоедипением Е к А. Если образовавшийся таким образом продукт присоединения отщепляет простую молекулу и дает какую-либо другую функциональную группу с двойной связью, то это не сказывается па кинетике, так как медленно протекающей стадией является присоединение. Бендер [4] убедительно показал, что для щелочного и кислого гидролиза эфиров промежуточное состояние является тетраэдрическим  [c.213]

    Очень важной реакцией а,р-ненасыщенных соединений является конденсация Михаэля с участием карбаниона, образующегося из соединения, содержащего активную метиленовую группу, например этилцианацета-та, ацетоуксусного или малонового эфира. Эта реакция соответствует катализируемой основанием альдольной конденсации, причем местом нуклеофильной атаки является р-углеродный атом, а не карбонильный углерод. Примером может служить присоединение малонового эфира по связи С = С,, но тройная связь С = С также активна в этой реакции [c.425]


Смотреть страницы где упоминается термин Нуклеофильное присоединение к ненасыщенному атому углерода: [c.60]    [c.392]   
Органическая химия (1964) -- [ c.272 ]




ПОИСК





Смотрите так же термины и статьи:

Присоединение нуклеофильное

Присоединение нуклеофильное Нуклеофильное присоединение



© 2025 chem21.info Реклама на сайте